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Abstract	
	
Freeing	 resting	 state	 functional	magnetic	 resonance	 imaging	 (fMRI)	 data	 from	
the	 deleterious	 impacts	 of	 in-scanner	 motion	 has	 been	 a	 hobbyhorse	 of	 the	
neuroimaging	 community.	 State-of-the-art	 guidelines	 advise	 to	 regress	 out	
models	 of	 nuisance	 variables,	 to	 scrub	 out	 excessively	 corrupted	 frames	 as	
assessed	 by	 a	 composite	 framewise	 displacement	 (FD)	 score,	 and	 to	 include	
average	FD	as	a	covariate	in	group-level	analyses.	
	
Here,	 we	 explored	 whether	 the	 complexity	 of	 current	 motion	 correction	
strategies	 truly	 fits	 head	 motion	 characteristics.	 We	 observed	 that	 scrubbed	
frames	relate	to	very	diverse	motion	profiles,	and	that	the	extent	to	which	they	
are	explored	relates	to	a	wide	array	of	anthropometric	and	behavioral	features.	
	
On	 non-scrubbed	 frames,	 we	 found	 that	 movers	 were	 distinguished	 by	 their	
spatiotemporal	 profile	 of	 motion	 along	 the	 full	 resting-state	 session.	 Strong	
relationships	with	behavior	were	also	evident	in	this	setting.	
	
In	 short,	 our	 results	 call	 for	 a	 shift	 towards	 the	 use	 of	 non-aggregated	 FD	
measurements	at	all	motion	denoising	steps	 in	order	 to	avoid	sampling	biases.	
They	also	favor	the	use	of	extended	sets	of	regressors	modeling	frame-to-frame	
displacement,	as	opposed	to	simpler	models.	
	 	



Introduction	
	
Resting-state	 functional	 magnetic	 resonance	 imaging	 (RS	 fMRI)	 has	 been	 a	
vibrant	and	 flourishing	research	area.	Since	 its	advent	 (Biswal	et	al.	1995),	 the	
assessment	 of	 statistical	 interdependence	 between	 brain	 regions,	 or	 functional	
connectivity	 (FC),	has	enabled	 the	determination	of	 large-scale	 functional	brain	
networks	(Damoiseaux	et	al.	2006,	Yeo	et	al.	2011,	Power	et	al.	2011),	and	the	
harvesting	of	 their	 spatiotemporal	properties	 towards	a	 refined	understanding	
of	a	constellation	of	brain	disorders	(Fox	and	Greicius	2010).	
	
One	of	the	most	remarkable	features	of	RS	fMRI	is	that	such	analyses	are	already	
feasible	from	as	little	as	6	minutes	of	acquisition	(Van	Dijk	et	al.	2009).	However,	
the	reliance	on	low	amounts	of	data	also	requires	that	the	acquired	time	courses	
be	impeccably	cleaned	from	potential	confounding	signals.	This	is	even	more	of	a	
concern	as	the	field	starts	moving	towards	even	sparser	types	of	analyses,	such	
as	dynamic	FC	(Laumann	et	al.	2016;	see	Preti	et	al.	2018	for	a	review)	or	real-
time	neurofeedback	(Watanabe	et	al.	2017)	assessments.	
	
Amongst	confounding	signal	sources,	in-scanner	motion	of	the	subjects	has	been	
a	 leading	 cause	 of	 investigation.	 Its	 deleterious	 impacts	may	 take	many	 forms,	
and	remain	incompletely	understood	(see	Caballero-Gaudes	and	Reynolds	2017	
for	a	review).	The	pivotal	discovery	that	even	short-lived	episodes	of	motion	may	
greatly	bias	FC	analyses	(Power	et	al.	2012,	Van	Dijk	et	al.	2012,	Satterthwaite	et	
al.	 2012)	 and	 lead	 to	 erroneous	 interpretations	 in	 clinical	 or	 developmental	
studies	 (Deen	 and	 Pelphrey	 2012,	 Makowski	 et	 al.	 2019)	 further	 fueled	 the	
development	of	robust	post-processing	strategies	to	free	fMRI	time	courses	from	
pervasive	motion	effects.	
	
Through	many	rigorous	and	extensive	studies	(Satterthwaite	et	al.	2013,	Yan	et	
al.	 2013,	 Power	 et	 al.	 2014,	 Burgess	 et	 al.	 2016,	 Ciric	 et	 al.	 2017,	 Parkes	 et	 al.	
2018),	 a	 consensus	 as	 for	what	 general	 steps	 are	 essential	 to	 a	 viable	RS	 fMRI	
denoising	pipeline	could	be	reached,	although	their	specificities	remain	debated.	
In	short,	 following	 the	 linear	realignment	of	 functional	 images	(Jenkinson	et	al.	
2002),	 estimates	 of	 motion	 over	 time	 are	 obtained	 along	 three	 translational	
directions	(X,	Y	and	Z)	and	three	rotational	planes	(referred	to	hereafter	as	α,	β	
and	 γ).	 Those	 estimated	 motion	 time	 courses	 are	 then	 linearly	 regressed	 out	
from	the	fMRI	data,	in	a	matrix	of	regressors	that	may,	or	not,	also	include	their	
quadratic	expansions,	 their	derivatives,	and/or	 their	 squared	derivatives.	More	
parsimonious	models	lead	to	a	greater	amount	of	retained	degrees	of	freedom	in	
the	 data,	while	more	 exhaustive	models	may	 remove	 signal	 of	 interest	 (Bright	
and	Murphy	 2015),	 but	 enable	 to	 account	 for	 biophysically	 relevant	 nonlinear	
motion	effects	(Friston	et	al.	1996).	
	
Scrubbing,	 that	 is,	 the	 exclusion	 of	 data	 points	 corrupted	 by	 excessive	
instantaneous	motion,	may	be	embedded	within	the	regression	step	(Lemieux	et	
al.	2007)	or	performed	at	a	later	denoising	stage	(Power	et	al.	2012).	Framewise	
displacement	 (FD)	 is	 computed	 as	 an	 aggregated	 measure	 across	 all	 motion	



parameters1.	 The	 effectiveness	 of	 scrubbing	 is	 evident,	 but	 the	wide	 variety	 of	
possibly	resulting	 fMRI	signal	changes,	 in	 their	duration	and	 topology,	 remains	
incompletely	understood	(Power	et	al.	2014).	
	
Finally,	 the	 addition	 of	 a	 covariate	 for	 group-level	 analyses	 has	 also	 been	
warranted	(Ciric	et	al.	2018).	Average	FD	over	 time	 is	 typically	used,	and	 thus,	
neither	 spatial	 nor	 temporal	 FD	 subtleties	 are	 accounted	 for.	 In	 addition,	 this	
step	 has	 been	 criticized	 for	 its	 risk	 of	 biasing	 some	 RS	 fMRI	 analyses:	 indeed,	
head	motion	correlates	with	attentional	or	impulsivity	levels	(Wylie	et	al.	2014,	
Kong	et	al.	2014),	and	may	thus	be	a	marker	of	cognitive	control	abilities	(Zeng	
et	 al.	 2014).	 It	 shows	 clear	 heritability	 (Couvy-Duchesne	 et	 al.	 2014),	 even	 if	
solely	non-scrubbed	frames	are	considered	(Engelhardt	et	al.	2017),	and	shares	
genetic	influences	with	hyperactivity	(Couvy-Duchesne	et	al.	2016)	or	body	mass	
index	 (Hodgson	 et	 al.	 2017).	 Correcting	 fMRI	 data	 according	 to	 head	 motion	
extent	may	thus	prevent	from	unraveling	relevant	population	differences.	
	
The	 tight	 interplay	 between	motion	 and	 anthropometric	 or	 behavioral	 factors	
makes	sense	when	one	reflects	on	the	MRI	scanner	environment:	it	is	expectable	
that	 the	 associated	 vivid	 noise	 and	 contiguity	 may	 be	 off-putting	 to	 the	 most	
sensitive	 individuals	 sensory-wise.	 Further,	 heavyweight	 subjects	 may	 more	
hardly	 refrain	 from	 moving,	 and	 more	 impulsive	 people	 may	 not	 manage	 to	
remain	continuously	still.	A	recent	multivariate	assessment	(Ekhtiari	et	al.	2019)	
confirmed	 those	 ties,	 but	 did	 not	 consider	 spatial	 or	 temporal	 motion	
specificities	(average	FD	was	used	as	metric	of	interest).	
	
Since	 even	 the	 most	 sophisticated	 motion	 correction	 approaches	 summarized	
above	are	 still	unable	 to	 fully	 remove	deleterious	motion	 influences	 (Yan	et	al.	
2013,	 Siegel	 et	 al.	 2017),	 our	 first	 question	 in	 the	 present	 work	was	 whether	
current	 strategies	 are	 intrinsically	 sufficient	 to	 capture	 individual	 motion	
characteristics.	 We	 observed	 that	 it	 was	 not	 the	 case:	 at	 the	 level	 of	 non-
scrubbed	 frames,	 our	 cohort	 of	 subjects	 could	 be	 separated	 into	 four	 mover	
subgroups	 with	 spatial	 and	 temporal	 motion	 specificities	 that	 are	 not	
always/never	 modeled	 in	 subject-level/group-level	 regression	 approaches.	 At	
the	 level	 of	 scrubbed	 frames,	 different	 flagged	 time	 points	 were	 associated	 to	
diverse	motion	profiles,	which	is	not	captured	by	existing	FD	measures.	
	
Our	 second	 related	 question	 was	 whether	 extracted	 motion	 features	 would	
consist	 in	 endophenotypes	 of	 anthropometric,	 behavioral	 or	 psychometric	
aspects.	Our	results	revealed	a	complex	set	of	yet	uncharacterized,	overlapping	
such	relationships,	demonstrating	that	the	complexity	of	in-scanner	head	motion	
goes	beyond	present	assumptions.	
	
	
	 	

																																																								
1	Here,	 we	 will	 be	 discussing	 the	 FD	 metric	 suggested	 by	 Power	 et	 al.	 (2012),	 but	 other	
alternatives	have	also	been	put	forward	in	the	past	literature	(Jenkinson	et	al.	2002,	Van	Dijk	et	
al.	2012).	



Materials	and	Methods	

Motion	Data	Acquisition	and	Preprocessing	
We	considered	a	set	of	224	healthy	subjects	from	the	Human	Connectome	Project	
(Smith	 et	 al.	 2013),	 scanned	 at	 rest	 (eyes	 open)	 over	 four	 separate	 15-minute	
sessions	at	a	TR	of	0.72s.	For	each	session,	motion	was	estimated	along	the	X,	Y	
and	 Z	 axes	 and	 the	 α,	 β	 and	 γ	 planes	 by	 a	 rigid-body	 transformation	 using	 a	
single-band	 reference	 image	 (SBRef)	 acquired	 at	 the	 start	 of	 each	 session	 as	 a	
reference,	and	FSL's	FLIRT	(Jenkinson	et	al.	2002).	It	resulted	in	6	time	courses	
(one	per	motion	parameter)	with	1200	time	points	each.	
	
Individual	motion	time	courses	were	differentiated,	so	that	our	analyses	would	
focus	on	instantaneous	displacement	from	time	t	to	time	t+1.	

Separation	Between	Non-scrubbed	and	Scrubbed	Frames	
Given	 their	 link	 to	 separate	 motion	 correction	 steps,	 we	 considered	 non-
scrubbed	 and	 scrubbed	 frames	 separately.	 We	 used	 Power's	 FD	 definition	
(Power	 et	 al.	 2012)	 at	 a	 threshold	 of	 0.3mm.	 Resorting	 to	 a	 more	 aggressive	
(0.2mm)	or	more	lenient	(0.4mm)	choice	to	separate	frame	types	did	not	modify	
our	global	findings	(see	Supplementary	Material	and	Supplementary	Figure	X	
for	a	more	detailed	description).	

Motion	Analysis	(Scrubbed	Frames)	
To	analyze	scrubbed	frames,	we	thresholded	individual	motion	time	courses	so	
that	 they	would	highlight	 one	of	 three	 states:	 +1	 (excessive	positive	motion	 in	
the	 considered	 direction),	 0	 (tolerable	 motion),	 or	 -1	 (excessive	 negative	
motion).	For	each	motion	parameter,	we	used	𝜇! ± 𝜃𝜎! 	as	thresholds,	with	μi	the	
mean	of	the	motion	time	course	for	parameter	i,	and	σi	its	standard	deviation.	θ	
was	a	common	threshold	across	motion	parameters,	selected	as	the	lowest	value	
that	yielded	at	least	one	of	6	excessive	motion	excursions	in	all	scrubbed	frames	
(θ	 =	 0.38).	 Discussed	 results	 remained	 qualitatively	 identical	 using	 a	 larger	
threshold	 value	 (θ2=1.1,	 leading	 to	 5%	of	 scrubbed	 frames	 to	 remain	 in	meta-
state	(0	0	0	0	0	0);	see	Supplementary	Figure	X).		
	
We	 performed	 a	 meta-state	 analysis	 of	 all	 possible	 36	 motion	 configurations.	
Explored	 states	were	 sorted	 in	 descending	median	 occurrence	 across	 subjects,	
and	significant	occurrence	values	were	determined	non-parametrically:	for	each	
subject,	 we	 generated	 19	 surrogate	 datasets	 in	 which	 we	 circularly	 shifted	
individual	motion	time	courses	with	respect	to	each	other	by	a	random	number	
of	 samples	 selected	 uniformly	 between	 20	 and	 1180,	 thus	 destroying	 any	
possible	 relationship	 between	 motion	 time	 courses.	 The	 lower	 bound	 of	 20	
samples	(14.4s)	enables	to	destroy	even	possibly	very	long	interplays	(Power	et	
al.	 2014).	Meta-state	 counts	were	 computed	across	 folds,	 and	 in	each	 case,	 the	
maximum	value	of	the	null	distribution	was	used	as	a	significance	threshold	at	α	
=	0.05.	In	addition,	we	also	computed	meta-state	transition	probabilities.	
	
To	 complement	 the	 above	 measures,	 we	 also	 computed	 two	 global	 metrics	
quantifying	the	dynamic	exploration	of	the	meta-state	space:	(1)	the	number	of	
different	states	visited	by	each	subject	over	a	session,	and	(2)	the	total	distance	



traveled	 in	the	meta-state	space	(computed	as	the	sum	of	L1	distances	between	
successive	meta-states).	Those	measures	were	inspired	from	a	past	fMRI	report	
exploring	the	dFC	meta-state	space	(Miller	et	al.	2016).	

Motion	Analysis	(Non-scrubbed	Frames)	
For	 each	 motion	 time	 course,	 we	 computed	 absolute	 valued	 instantaneous	
displacement.	 Thus,	 we	 did	 not	 consider	 the	 sign	 of	 the	 changes	 (e.g.,	 moving	
positively	 as	 opposed	 to	 negatively	 in	 the	 X	 direction);	 this	 is	 because	 initial	
analyses	 indicated	that	positive-valued	and	negative-valued	movements	always	
compensated,	to	the	exception	of	the	X	case	(two-sided	Wilcoxon	rank	sum	test,	
p=0.0001;	see	Supplementary	Figure	X).	
	
Then,	we	averaged	motion	values	within	a)	each	motion	type	(X,	Y,	Z,	α,	β	and	γ)	
and	b)	 each	of	6	 even	duration	 time	 intervals	 along	 the	 scanning	 sessions	 (2.4	
min	each).	This	 resulted	 in	 a	 total	 of	 36	 conditions.	We	 chose	6	 temporal	 sub-
bins	 to	 give	 equal	 weight	 to	 spatial	 and	 temporal	 domain	 information	 in	 our	
decomposition	of	the	data.	Eventually,	the	data	was	z-scored	across	subjects	for	
each	condition,	so	that	positive	values	highlight	strong	movers	(at	a	given	time	
and	 for	a	given	motion	parameter)	with	 respect	 to	 the	mean,	 and	vice	versa.	 It	
also	follows	that	an	equal	weight	is	given	to	each	condition.	
	
To	 separate	 all	 subjects	 into	 different	 subgroups	 of	 movers,	 we	 performed	
spectral	clustering	(Von	Luxburg	2007)	on	an	N-nearest	neighbor	graph	(N	=	10,	
cosine	distance	used	as	distance	measure;	note	that	the	results	remained	almost	
identical	with	N	=	5	or	N	=	15,	as	can	be	seen	in	Supplementary	Figure	X).	We	
used	the	first	three	eigenvectors	with	non-zero	eigenvalue	for	the	clustering,	in	
order	 to	also	be	able	 to	 represent	 spatiotemporal	motion	data	graphically	 (see	
Figure	2A/B).	
	
The	optimal	number	of	 clusters	 into	which	 to	 subdivide	 the	data	was	assessed	
through	 consensus	 clustering	 (Monti	 et	 al.	 2003),	 a	 subsampling-based	
assessment	of	robustness.	In	more	details,	the	clustering	process	was	repeatedly	
run	 (100	 times)	 over	 80%	 of	 the	 data	 points	 (i.e.,	 179	 subjects),	 for	 cluster	
numbers	 k	 ranging	 from	2	 to	 17.	 For	 each	 k,	 a	 consensus	matrix	 summarizing	
how	frequently	two	data	points	would	be	clustered	together	was	derived.	Since	
the	goal	in	a	good	clustering	scheme	is	to	either	always	cluster	two	data	points	
together,	 or	 to	 never	do	 so,	 the	 goal	 is	 to	 find	 a	 k	 for	which	 the	proportion	of	
ambiguously	 clustered	 pairs	 (Șenbabaoğlu	 et	 al.	 2014),	 linked	 to	 intermediate	
consensus	values,	is	the	lowest.	As	can	be	seen	in	Supplementary	Figure	X,	k=4	
stood	as	a	clear	optimum.	
	
To	 evaluate	 whether	 there	 was	 any	 significant	 effect	 of	 scanning	 duration,	
motion	parameter	or	mover	subtype,	or	any	 interaction	between	 these	 factors,	
we	conducted	a	three-way	ANOVA	(factor	1:	scanning	duration,	factor	2:	motion	
parameter,	factor	3:	mover	subtype)	and	assessed	significance	by	comparing	the	
obtained	 F-values	 with	 a	 null	 distribution	 generated	 non-parametrically	 over	
10'000	 folds.	 In	 addition,	 we	 also	 individually	 plotted	 scanning	 duration	 or	
motion	 parameter	 against	 cluster	 assignments	 (Figure	 2C),	 averaging	 over	 all	



entries	 from	 the	 other	 factor	 (e.g.,	 the	 bar	 labeled	 'X'	 denotes	 the	 average	 of	
motion	along	the	X	direction	from	t1	to	t6).	

Behavioral	Data	Acquisition	
For	 each	 subject,	 a	 battery	 of	 behavioral	 and	 demographic	 scores	 was	 also	
quantified.	A	list	of	all	the	investigated	scores	in	the	present	study	can	be	found	
in	Supplementary	Table	1.	They	were	subdivided	into	several	key	sub-domains,	
largely	following	the	original	classification	found	in	the	HCP	Data	Dictionary2:	
	
1. Demographic	 parameters,	 including	 race,	 ethnicity,	 employment	 status,	

income	or	education	level	
2. Physical	health,	such	as	weight,	height,	body	mass	index	(weight/height2),	

blood	pressure,	hormonal	levels	
3. Alertness	levels,	assessed	in	terms	of	cognitive	status	(MMSE;	Folstein	et	al.	

1983)	and	sleep	quality	(PSQI;	Buysse	et	al.	1989)	
4. Cognitive	 abilities	 (in	 terms	 of	 accuracy,	 response	 time	 or	 errors)	 across	

various	 tasks	spanning	different	cognitive	domains	 (see	Barch	et	al.	2013	
for	details)	

5. Emotional	level	in	terms	of	anger,	fear,	stress	or	life	satisfaction	(assessed	
through	the	NIH	toolbox;	Gershon	et	al.	2010)	

6. Motor	 abilities,	 including	 endurance,	 gait	 speed,	 dexterity	 and	 strength	
measurements	

7. Sensory	levels,	quantified	in	terms	of	responses	to	noise,	odor,	pain,	taste,	
or	contrast	

8. Personality	traits,	as	assessed	by	the	NEOFAC	questionnaire	(McCrae	et	al.	
2004)	

9. Psychiatric	and	life	function	(Achenbach	2009)	
10. Substance	use,	that	is,	 intake	of	alcohol,	tobacco	or	drugs	(partly	from	the	

SSAGA	questionnaire;	Buchholz	et	al.	1994).	
	
For	some	scores,	several	entries	were	not	acquired	in	a	sub-fraction	of	subjects	
(mean:	1.52%,	median:	0.89%,	maximum:	21.43%).	This	was	taken	into	account	
in	behavioral	data	processing	(see	Section	Behavioral	Data	Processing)	so	that	
it	would	exert	a	minimal	effect	on	the	described	findings.	
	
Of	note	 is	 that	we	did	not	 include	 some	 types	of	 scores	 into	our	 analysis.	This	
included:	
	

1. Gender	and	age	
2. Family	relationships	between	subjects	and	twin	status	
3. Psychiatric	history	of	the	mother	or	father	
4. Scores	reflective	of	the	menstrual	cycle	in	female	subjects.	

	
In	 several	 cases,	 Age	 adjusted	and	Unadjusted	 scores	 are	 provided.	 Both	 were	
kept,	and	aggregated	in	further	processing	steps	(see	Section	Behavioral	Data	
Processing).		

																																																								
2	https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-
+Updated+for+the+1200+Subject+Release	



Behavioral	Data	Processing	
Because	some	domains	included	many	more	scores	than	others,	and	in	order	to	
conduct	a	balanced	analysis,	we	converted	the	scores	of	each	domain	 into	only	
one	 value	 through	 Probabilistic	 Principal	 Component	 Analysis	 (PPCA;	 Bishop	
1999),	which	enabled,	at	the	same	time,	to	fill	in	the	few	missing	entries	in	each	
case.	 Some	 scores	 were	 not	 retained	 because	 they	 appeared	 irrelevant	 to	 us	
(labeled	 '2'	 in	 Supplementary	 Table	 1;	 e.g.,	 has	 blood	 been	 sampled?),	 and	
others	 because	 they	 were	 considered	 too	 specific	 (that	 is,	 would	 induce	
overfitting),	 or	 overlapped	 with	 others	 (labeled	 '3';	 examples	 would	 be	 the	
individual	DDISC	scores,	which	are	already	summarized	in	AUC	measurements).	
	
Eventually,	we	only	retained	 the	domain	scores	 that	were	sufficiently	accurate,	
according	to	the	criteria	proposed	by	Smith	et	al.	(2015);	excluded	scores	at	this	
stage	 are	 labeled	 '4'.	 The	 final	 matrix	 of	 behavioral	 information	 used	 for	 the	
analyses	 had	 size	 224	 x	 46	 (subjects	 x	 domains).	 Detailed	 information	 about	
what	fraction	of	each	domain	score	is	accounted	for	by	a	given	original	variable	
are	provided	in	the	Supplementary	Material	(Supplementary	Figure	X).	

Univariate	link	between	motion	subgroups	and	anthropometry/behavior	
To	 determine	whether	 some	 anthropometric/behavioral	 domains	would	 differ	
across	mover	subgroups,	we	performed	a	univariate	assessment	where,	for	each	
of	the	46	assessed	domains,	we	computed	a	score	indicative	of	cluster-to-cluster	
distinction.	Formally,	following	Gu	et	al.	(2012):	
	

𝐹(𝑥!) =
𝑛!(𝜇!! − 𝜇!)!!

!!!

𝑛!(𝜎!!)!!
!!!

,	

	
where	 xi	is	 the	 vector	of	 the	 ith	 domain	 scores	 across	 subjects,	 μi	 is	 its	 average	
regardless	of	group	classification,	μik	is	its	average	within	group	k,	and	σik	is	the	
standard	 deviation	 within	 group	 k.	 A	 large	 score	 value	 indicates	 that	 the	
assessed	behavioral	domain	shows	distinct	values	between	clusters.	
	
To	 non-parametrically	 extract	 the	 significant	 scores,	 we	 recomputed	 each	 of	
them	 1'000	 times	 after	 shuffling	 subject	 motion	 entries,	 and	 considered	 for	
interpretation	 the	 domains	 for	 which	 the	 score	 exceeded	 the	 95th	 null	
distribution	percentile	following	Bonferroni	correction	for	46	tests.	

Multivariate	links	between	motion	features	and	anthropometry/behavior	
We	performed	a	multivariate	assessment	on	the	extracted	motion	features	from	
non-scrubbed	or	from	scrubbed	frames.	We	considered	the	matrix	of	behavioral	
scores	 (size	224	 x	 46),	 and	 the	matrix	 of	motion	 scores	 (size	224	 x	36	 for	 the	
non-scrubbed	 case,	 and	 224	 x	 2	 for	 the	 scrubbed	 case).	We	 used	 Partial	 Least	
Squares	 (Krishnan	 et	 al.	 2011)	 to	 derive	 components	 (that	 is,	 linear	
combinations	of	motion	or	behavioral	scores)	showing	maximal	covariance.	
	
To	assess	significance	of	the	components,	we	compared	their	singular	values	to	a	
null	distribution	constructed	from	1'000	shuffled	datasets,	following	Zöller	et	al.	
(2017).	We	 focused	our	 interpretation	on	the	extracted	components	significant	



at	 α=0.02.	 Additional	 component	 examples	 are	 provided	 in	 Supplementary	
Figure	X.	
	
To	 determine	 the	 significance	 of	 individual	 latent	 scores,	 we	 performed	
bootstrapping	 with	 80%	 of	 the	 data.	 At	 each	 bootstrapping	 fold,	 singular	
matrices	were	 linearly	 aligned	 to	 the	 ones	 from	 the	 full	 decomposition	with	 a	
Procrustes	transform	(Gower	1975).	Let	R1	the	rotation	matrix	used	to	align	the	
spatiotemporal	 motion	 data,	 and	 R2	 the	 rotation	 matrix	 used	 for	 behavioral	
parameters;	the	final	rotation	applied	was	given	by	(R1+R2)/	2.	
	
To	 interpret	 the	extracted	components	 in	 the	case	of	non-scrubbed	 frames,	we	
converted	the	36-element	vector	resulting	from	the	PLS	process	into	a	6-element	
space	and	a	6-element	 time	representation,	by	averaging	across	all	 time	points	
or	 across	 all	 spatial	 directions,	 respectively.	 Z-scores	 for	 each	 entry	 were	
computed	on	those	summarizing	metrics.	
	 	



Results	
Given	 the	 fact	 that	 scrubbed	 frames	 and	 non-scrubbed	 frames	 are	 typically	
separated	in	preprocessing	strategies,	we	analyzed	them	independently.	Power's	
framewise	displacement	metric	(FDPower;	Power	et	al.	2012)	was	used	to	tag	the	
time	points	to	scrub,	and	the	results	below	are	presented	for	a	threshold	value	of	
0.3mm.	

Scrubbed	frames	arise	from	diverse	types	of	motion	excursions	
First,	we	 considered	 in	which	directions	 subjects	would	move	 the	most	during	
scrubbed	 frames.	 Figure	 1A	 depicts	 the	 top	 50	 meta-states	 (ordered	 in	
descending	order	of	median	expression	across	subjects)	present	in	our	analyzed	
population.	Unsurprisingly,	the	no	motion	meta-state	(0	0	0	0	0	0)	was	the	most	
prominent.	 Some	 combinations	 of	 motion	 parameters	 were	 particularly	
prominent:	excursions	along	the	X	and	the	Z	directions	could	be	seen	in	the	large	
majority	of	top	meta-states,	and	this	was	accompanied	by	excursions	along	the	α	
rotational	 plane,	 with	 opposite	 sign.	 Other	 parameters	 revealed	 no	 obvious	
relationship	from	this	introductory	assessment.	
	
Next,	we	 assessed	 the	 recruitment	 of	 positive	 and	 negative	motion	 excursions	
along	 meta-states	 of	 decreasing	 median	 occurrence	 (Figure	 1C).	 The	 dashed	
diagonal	 line	 reflects	 the	 expected	 cumulative	 distribution	 if	 a	 given	 motion	
parameter	 shows	 excursions	 uniformly	 distributed,	 regardless	 of	 meta-state	
importance.	We	 observed	 deviations	 from	 this	 case	 regarding	 X	 and	 Z	motion	
increases,	where	the	most	occurring	meta-states	(up	to	around	20%	of	the	total	
pool;	 first	brown	vertical	bar)	 showed	a	 larger	 recruitment	 than	expected	 (see	
the	positive	hump	of	associated	curves).	Such	relationships	were	also	captured	
in	 the	 case	 of	 negative	 excursions;	 however,	 prominent	 recruitment	 of	 meta-
states	with	 negative	 Z	 direction	motion	 ended	 earlier,	 while	 the	 opposite	was	
true	 for	 the	 X	 direction	 (second	 brown	 vertical	 bar),	 evidencing	 an	 intriguing	
asymmetry.	The	presence	of	negative	changes	along	the	β	and	γ	planes	was	also	
seen	alongside	the	latter	X	excursions.	
	
Interestingly,	 turning	 to	 the	 percentage	 of	 subjects	 showing	 significant	
occurrences	 of	 the	 meta-states	 (Figure	 1B),	 three	 sub-pools	 could	 be	
distinguished:	 the	 first	 involved	 the	 150	 most	 prominent	 meta-states,	 with	
elevated	 occurrences	 across	 subjects.	 The	 second	 showed	 still	 notable	
recruitment	of	meta-states	150	to	around	350,	albeit	at	a	lower	level.	The	third	
included	the	rest	of	poorly	expressed	meta-states.	Those	transitions	occurred	at	
similar	meta-state	fractions	as	compared	to	the	above	cumulative	results.		
	
Mean	 transitions	 across	 meta-states	 showed	 a	 clearly	 non-random	 structure	
(Figure	1D).	Of	note	is	that	apart	from	transitions	from	meta-state	(0	0	0	0	0	0)	
to	itself,	median	transition	probabilities	across	subjects	were	all	null,	highlighting	
the	large	heterogeneity	in	motion	dynamics	across	subjects.	Focusing	on	the	top	
50	meta-states	 (Figure	 1D,	 lower	matrix),	meta-states	1,	10,	13,	35-38	and	45	
stood	 amongst	 the	 top	 start	 and	 end	 states.	 Meta-state	 1	 is	 the	 no	 motion	
condition,	meta-states	10	and	13	solely	include	X	motion,	meta-states	35-38	and	
45	only	include	translational	motion	changes.	The	top	transitions	were	between	



meta-states	10	and	24	(from	negative	X	to	negative	α),	10	and	45	(from	negative	
X	to	positive	α),	13	and	13,	and	13	and	36	(positive	X	to	negative	Y).	
	
Regarding	 global	 meta-state	 dynamics	 (Figure	 1E),	 subjects	 showed	 a	 wide	
array	of	 traveled	distance	(median	6214,	minimum	2332,	maximum	8336)	and	
visited	states	(median	368,	minimum	194,	maximum	498).	

Spatiotemporal	diversity	of	motion	in	non-scrubbed	frames	
Average	 motion	 across	 six	 even-duration	 session	 bins,	 and	 the	 6	 motion	
parameters,	 was	 quantified	 on	 non-scrubbed	 frames	 (see	 Materials	 and	
Methods).	 This	 spatiotemporal	 motion	 profile	 characterization	 revealed	 the	
existence	 of	 four	 separate	 subgroups	 of	 movers	 (Figure	 2B):	 in	 the	 first	 one	
(n1=70,	 red	 patches),	 subjects	 showed	 low	motion	 across	 all	 time	 and	motion	
dimensions	 (negative	 z-score	values	 in	Figure	 2C).	 In	 the	 second	 (n2=51,	dark	
blue	 patches),	 subjects	 moved	 little,	 and	 less	 following	 the	 first	 sixth	 of	 the	
session,	 with	 particularly	 strong	 motion	 along	 the	 α	 and	 β	 rotational	
components.	 The	 third	 group	 (n3	 =	 67,	 orange	 patches)	 showed	 very	 strong	
motion	 spatiotemporally,	 and	 the	 fourth	 one	 (n4	 =	 36,	 cyan	 patches)	 showed	
particularly	 strong	motion	 in	 the	 γ	 rotational	 plane,	 which	 slightly	 attenuated	
after	the	first	sixth	of	the	session.	
	
Statistical	 analysis	 confirmed	 the	 above	 assessments:	 on	 top	 of	 a	 significant	
effect	of	group	(F	=	1414.41),	there	was	a	significant	time	x	group	interaction	(F	
=	3.11),	and	post-hoc	assessment	revealed	that	while	groups	1,	2	and	4	showed	a	
decrease	in	motion	over	time	(β1=-0.007	[-0.01,-0.003],	p=0.0026,		b2=-0.0194	[-
0.027,-0.012],	 p=6.31	 10-6,	 b4	 =	 -0.025	 [-0.031,-0.019],	 ,	 p=5.6	 10-10,	
respectively),	 group	 3	 exhibited	 an	 increase	 (b3	 =	 0.0354	 [0.014,0.057],	
p=0.0013).	Thus,	different	mover	subgroups	displayed	varying	temporal	changes	
in	their	extent	of	motion.	
	
In	terms	of	spatial	properties,	there	was	a	significant	effect	of	space	(F=5.92),	as	
well	 as	 a	 significant	 space	 x	 group	 interaction	 (F	 =	 83.88).	 Exhaustive	 results	
from	a	post-hoc	assessment	are	displayed	in	Table	1.	They	show	that	subjects	in	
group	4	moved	the	most	in	the	gamma	plane	(hence	their	blue	shade	in	Figure	
2A),	 while	 subjects	 from	 group	 2	moved	 the	 least	 there	 (hence	 their	 red	 and	
green	tones).	Group	1	featured	the	 lowest	movers	 in	Y,	Z,	alpha	and	β,	while	 in	
group	3,	subjects	moved	most	 in	X,	Y,	Z,	α	and	β	(thus,	 they	appear	 in	white	 in	
Figure	2A).	Overall,	each	group	could	thus	be	clearly	distinguished	on	the	basis	
of	spatial	motion	properties.	

Univariate	links	of	mover	subgroups	to	anthropometry	and	behavior	
Next,	 we	 related	 the	 spatiotemporal	motion	 characteristics	 of	 the	 subjects	 (as	
summarized	 by	 their	 mover	 group	 assignment)	 to	 their	 anthropometric,	
behavioral	and	psychometric	features	(see	Materials	and	Methods	 for	details).	
BMI	(good)	(which	mostly	reflects	the	influence	of	height),	BMI	(bad)	(denoting	
the	 impact	 of	 weight),	Blood	 pressure	 and	Cognitive	 flexibility	 components	
were	 significantly	 different	 across	 mover	 subtypes	 following	 Bonferroni	
correction	(Figure	3).	



Multivariate	assessment	of	motion/behavior	relationships	
Finally,	we	attempted	to	extract	significant	relationship(s)	between	our	motion	
characteristics	 and	 anthropomorphic/behavioral/psychometric	 features	 (see	
Materials	and	Methods	for	methodological	details).	
	
Regarding	 non-scrubbed	 motion	 characteristics	 (Figure	 4),	 there	 were	 three	
significant	 components	 (p=0,	 p=0.017,	 p=0.008).	 Component	 1	 characterized	
motion	regardless	of	space	or	 time	(apart	 from	α,	all	values	had	an	absolute	z-
score	 larger	than	3):	subjects	showing	 larger	global	motion	values	also	showed	
worse	 endurance,	 larger	 sensitiveness	 to	 sound	noise,	worse	working	memory	
performance,	worse	 spatial	 orientation	 (both	 in	 terms	 of	 larger	 response	 time	
and	 lower	 accuracy),	 lower	 cognitive	 flexibility,	 worse	 fluid	 intelligence,	 and	
worse	body	mass	 index	 (decreased	height,	 enhanced	weight).	 In	 addition,	 they	
were	more	anxious,	showed	more	thought	problems,	aggressiveness,	inattention	
and	antisocial	behaviors.	
	
Component	2	largely	corresponded	to	movement	in	the	γ	plane.	Stronger	movers	
in	 that	 plane	 also	 showed	 sleep	 problems,	 but	 performed	 better	 in	 cognitive	
flexibility	 and	 spatial	 orientation	 tasks.	 Their	 response	 time	 was	 larger	 when	
tested	 for	 sustained	 attention,	 and	 they	 showed	 a	 constellation	 of	 elevated	
psychometric	 scores	 including	 anxiety,	 withdrawal,	 somatic	 problems,	
attentional	 problems,	 aggressiveness,	 hyper-responsiveness	 and	 rule	 breaking	
behaviors.	They	also	showed	stronger	alcohol	consumption.	
	
Component	 3	 contrasted	 translational	 (mostly	 X)	 and	 rotational	 (mostly	 α)	
motion.	 Stronger	 translational	 movers	 (i.e.,	 also	 lower	 rotational	 movers)	
showed	 larger	 weight	 and	 height,	 larger	 blood	 pressure,	 enhanced	 cognitive	
flexibility	abilities,	significant	self-regulation	abilities,	and	greater	response	time	
upon	 a	 sustained	 attention	 task.	 They	 were	 also	 better	 at	 discriminating	
emotions,	 but	 worse	 at	 contrast	 sensitivity.	 Psychometrically,	 they	were	more	
intrusive	and	showed	less	externalizing,	withdrawal	and	thought	problems.	
	
Regarding	 the	 results	 for	 scrubbed	 frames	 (Figure	 5),	 both	 components	were	
significant	 (p=0.0011	 and	 p=0.0099).	 The	 first	 one	 denoted	 a	 relationship	
between	 lowered	 explored	 distance	 and	 number	 of	 visited	 meta-states,	 and	
enhanced	 "negative	 characteristics"	 reminiscent	 of	 Component	 1	 described	
above	 (compare	Figure	 4A	 and	Figure	 5A):	 in	 particular,	 subjects	 expressing	
this	component	had	greater	weight,	lowered	height,	worsened	cognitive	abilities,	
and	globally	larger	psychmetric	scores.	
	
As	 for	 the	 second	 component	 (Figure	 5B),	 more	 strongly	 expressing	 subjects	
traveled	 less	 in	 the	 state	 space,	 but	 explored	 a	broader	 array	of	 distinct	meta-
states.	By	far,	the	most	prominent	anthropomorphic	feature	was	a	larger	height	
(resulting	 in	 a	 lower	 body	 mass	 index).	 Interestingly,	 larger	 values	 were	 also	
seen	 specifically	 for	 rule	 breaking	 and	 hyper-responsiveness	 psychometric	
scores,	alcohol	consumption,	as	well	as	significantly	worsened	self-regulation.	 	



Discussion	
We	observed	that	head	motion	in	the	MRI	scanner	during	RS	acquisitions,	one	of	
the	 leading	 topic	 of	 fMRI	 data	 preprocessing	 efforts,	 exhibits	 a	 spatiotemporal	
complexity	that	goes	beyond	what	is	accounted	for	by	commonly	used	denoising	
strategies.	
	
At	 the	 level	 of	 scrubbed	 frames,	 many	 different	 combinations	 of	 motion	
excursions	 along	 all	 6	 available	 degrees	 of	 freedom	were	 consistently	 present	
across	 subjects.	 The	 most	 prominent	 directions	 were	 X	 and	 Z,	 which	 match	
lateral	 and	 nodding	 motions,	 known	 to	 be	 particularly	 prominent	 during	
scanning.	Interestingly,	though,	there	was	an	asymmetry	in	that	positive	changes	
in	X	were	strongly	represented	in	only	the	most	occurring	meta-states	(together	
with	positive	Z	changes),	while	negative	changes	in	X	spanned	a	wider	array	of	
meta-states	 and	 appeared	 to	 occur	 alongside	 β	 and	 γ	 rotational	 displacement.	
This	 raises	 the	 possibility	 of	 a	 dual	 involvement	 of	 translational	 displacement	
along	 X:	 one	 component,	 linked	 to	 the	 top	 meta-states	 only,	 would	 relate	 to	
typical	 in-scanner	 motion,	 while	 the	 other	 would	 solely	 involve	 negative	
translational	 displacement	 and	 may	 be	 related	 to	 other	 features.	 We	
hypothesized	 a	 possible	 explanatory	 role	 of	 handedness	 scores,	 but	 no	
significant	 correlation	 was	 found	 with	 the	 bias	 in	 positive	 versus	 negative	 X	
recruitment.	
	
On	 top	 of	 the	 variety	 in	 simultaneous	 changes	 seen	 across	 motion	 directions,	
there	was	also	a	very	structured	temporal	dynamics,	in	which	transitions	did	not	
only	 involve	 direct	 returns	 to	 the	 baseline	 state.	 This	 has	 several	 important	
implications:	 first,	 it	 may	 partly	 explain	 the	 wide	 spatiotemporal	 diversity	 in	
observed	 fMRI	signal	 changes	 following	micro-movements	 (Power	et	al.	2014),	
although	other	factors	are	likely	to	contribute	as	well,	such	as	the	exact	timing	of	
motion	 along	 the	 acquisition	 of	 successive	 imaging	 planes.	 In	 order	 to	 further	
investigate	 the	 contributions	 of	 those	 different	 factors,	 future	 analyses	 should	
focus	 on	 motion	 data	 obtained	 at	 higher	 temporal	 resolution,	 through	 an	
external	apparatus	rather	than	indirectly	from	fMRI	recordings	themselves.	
	
Second,	 the	 presence	 of	 temporal	 relationships	 between	 successive	 scrubbed	
frames	 also	 conceptually	 challenges	 the	notion	of	 scrubbing,	which	 is	 a	 frame-
level	 excision	 strategy	 and	 thus,	 does	 not	 incorporate	 any	 information	 about	
temporality.	 As	 RS	 acquisitions	 are	 achieved	 at	 increasingly	 lower	 TR,	 this	
conceptual	mismatch	is	expected	to	become	more	and	more	apparent.	
	
Although	 this	 does	 not	 argue	 against	 the	 efficiency	 of	 scrubbing	 per	 se	 (the	
signals	 will	 be	 cleaned	 as	 long	 as	 all	 corrupted	 frames	 are	 removed),	 it	 may	
prevent	the	implementation	of	more	tailored	strategies	for	motion	correction,	in	
which	 excised	 fMRI	 volumes	 could	 perhaps	 be	 interpolated	 meaningfully	 and	
thus,	 prevent	 the	 loss	 of	 degrees	 of	 freedom	 (distinct	 across	 subjects)	 that	
presently	undermines	scrubbing.	To	date,	such	approaches	remain	rare	(Patel	et	
al.	2014,	Yang	et	al.	2019).	An	interesting	alternative	direction	to	follow	may	be	
the	application	of	probabilistic	approaches	that	directly	model	temporality,	such	
as	through	hidden	Markov	models	(HMMs),	which	are	already	used	at	the	level	of	
RS	fMRI	analyses	(Vidaurre	et	al.	2017,	Bolton	et	al.	2018).	
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Time	 points	 retained	 for	 analysis	 (i.e.,	 not	 scrubbed	 out)	 showed	 clear	
spatiotemporal	 properties,	 with	 changing	 spatial	 motion	 along	 the	 course	 of	
scanning.	 Our	 separation	 of	 subjects	 into	 four	 distinct	 subgroups	 of	 movers	
confirms	 an	 expectable,	 but	 never	 explicitly	 verified	 fact:	 that	 within	 a	
population	of	healthy	 subjects	within	a	narrow	age	 range,	different	 individuals	
will	show	distinct,	characteristic	and	non-random	head	motion	profiles.	
	
More	 specifically,	 two	 mover	 subgroups	 were	 opposite	 extremes:	 one	 moved	
very	 little	 as	 compared	 to	 the	 average	 across	 time	 and	 space,	while	 the	 other	
consistently	 displayed	 very	 large	 displacements.	 Rotational	 motion	 was	 the	
distinguishing	 feature	of	 the	 last	 two	groups,	 respectively	 in	 the	α/β	(group	2)	
and	 the	γ	 (group	4)	planes.	All	 in	 all,	 the	presence	of	 strongly	differing	 spatial	
motion	profiles	across	subjects	confirms	the	importance	of	subject-level	motion	
correction	through	regression.	Further,	since	our	work	focused	on	instantaneous	
motion	 (t	 to	 t+1	 changes),	 our	 results	 are	 an	 additional	 argument	 in	 favor	 of	
more	complete	regression	models,	at	 least	to	the	point	of	 incorporating	motion	
time	courses	and	their	shifted	counterparts.				
	
Albeit	 less	 evident	 than	 the	 spatial	 component,	 a	 temporal	 change	 along	 the	
scanning	session	(and	its	interaction	with	the	space	factor)	was	also	statistically	
significant:	this	was	in	largest	part	due	to	a	changed	motion	extent	after	the	first	
sixth	 of	 the	 session.	 This	 need	 for	 a	 few	minutes	 before	 setting	 into	 a	motion	
steady	 state	 suggests	 that	 to	 avoid	 one	 possible	 source	 of	 bias,	 if	 affordable,	
future	 fMRI	 analyses	 may	 be	 performed	 on	 time	 courses	 trimmed	 by	 a	 few	
minutes.	 Alternatively,	 it	 could	 also	 be	 envisaged	 to	 explicitly	model	 this	 early	
transition	as	one	or	several	motion	regressors.	
	
While	 subjects	 from	 groups	 1,	 2	 and	 4	 moved	 less	 after	 the	 first	 sixth	 of	 the	
recording	session,	high	movers	from	group	3	moved	more.	Since	the	latter	stood	
out	in	terms	of	body	mass	index	and	blood	pressure,	a	reasonable	assumption	is	
that	 this	 enhanced	 motion	 extent	 reflects	 an	 inability	 to	 cope	 with	
anthropometric	 properties	 over	 an	 extended	 time.	 As	 for	 low	 movers,	 they	
showed	 significantly	 larger	 BMI	 (good)	 (reflecting	 the	 positive	 influence	 of	
height)	and	Cognitive	flexibility	scores,	implying	that	their	reduction	in	motion	
(and	overall	 globally	 low	motion	 across	 space	 and	 time)	may	be	 supported	by	
anthropometric	factors,	as	well	as	by	a	better	ability	to	cope	with	the	constraints	
of	 scanning	 (for	 example,	 perhaps	 by	 better	 adjusting	 to	 noise	 changes	 over	
scanning).	
	
Intriguingly,	although	cognitive	flexibility	differed	between	the	low	movers	and	
the	 high	movers	 and	 α/β	movers,	 there	was	 no	 difference	with	 the	 γ	movers,	
although	those	moved	more	on	average	than	α/β	movers.	This	raises	the	concern	
that	 important	 aspects	 regarding	 head	 motion	 may	 have	 been	 missed	 by	 our	
univariate	 analysis.	One	possibility	 could	 be	 that	 our	 statistical	 correction	was	
too	 stringent,	 since	 several	 of	 the	 investigated	 domain	 scores	 are	 actually	
correlated.	Along	 this	 line	of	 reasoning,	 inattention	 (previously	 related	 to	head	
motion	 as	 quantified	 by	 averaged	 FD	 over	 time;	Wylie	 et	 al.	 2014,	 Kong	 et	 al.	
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2014)	was	close	to	significance	and	may	be	one	of	those	additional	contributing	
factors.	
	
A	 second	 possibility	 is	 inherent	 to	 the	 approach:	 univariate	 analysis	 does	 not	
enable	 to	 reveal	 possibly	 interacting	 factors	 which	 would	 not	 be	 effective	 on	
their	 own,	 but	 become	 meaningful	 when	 combined	 together.	 To	 explore	 this	
possibility,	 we	 complemented	 our	 initial	 assessment	 by	 performing	 a	 PLS	
analysis.	The	 first	derived	component	 showed	remarkable	 similarities	with	 the	
aforementioned	 findings:	 it	 characterized	motion	 in	all	 spatial	directions,	 at	 all	
time	points,	with	an	increase	following	the	first	session	sixth.	Amongst	important	
anthropometric	 and	behavioral	domains,	 body	mass	 index,	blood	pressure	and	
cognitive	 flexibility	were	 amongst	 the	 dominating	 factors.	 Lowered	 endurance	
was	also	revealed	in	larger	movers,	on	top	of	additional	psychometric	scores	for	
aggressiveness,	 inattention	 and	 antisocial	 behaviors.	 Larger	 movers	 also	
performed	 more	 poorly	 in	 spatial	 orientation,	 fluid	 intelligence	 and	 working	
memory	 tasks.	 Overall,	 this	 general	 pattern	 is	 highly	 reminiscent	 of	 a	positive-
negative	 mode	 of	 population	 covariation	 previously	 described	 by	 Smith	 and	
colleagues	(2015),	and	put	 forward	as	relating	behavior,	demographics	and	FC.	
Our	 results	 raise	 the	 possibility	 that	 this	 mode,	 at	 least	 in	 part,	 reflected	
differences	 in	 motion	 across	 the	 considered	 subjects	 (note	 that	 the	 authors	
considered	the	same	HCP	dataset	as	we	did).		
	
Particularly	 interesting	 is	 the	observation	 that	 the	 first	 component	 found	 from	
our	 analysis	 of	 non-scrubbed	 frames	 substantially	 overlapped	 with	 that	
extracted	 from	 the	 analysis	 of	 meta-state	 space	 exploration	 on	 the	 basis	 of	
scrubbed	frames.	There	was	a	significant	positive	correlation	between	mean	FD	
and	latent	scores	of	that	 latter	component,	 indicating	that	 it	 indeed	reflects	the	
behavioral,	 anthropometric	 and	 psychometric	 properties	 of	 large	movers.	 This	
enables	 to	 tie	 non-scrubbed	 and	 scrubbed	 frames	 together	 as	 partly	
encompassing	 similar	 information	 about	 subjects.	 To	 further	 demonstrate	 this	
feat,	 we	 plotted	 both	 meta-parameters	 in	 a	 two-dimensional	 representation	
where	 color	 coding	 reflects	 the	 group	 labels	 extracted	 from	 non-scrubbed	
analyses:	the	segregation	of	large	mover	data	points	from	other	groups	is	evident	
along	the	first	axis	(number	of	explored	meta-states).	
	
On	top	of	those	commonalities,	a	major	asset	of	PLS	is	the	ability	to	disentangle	
linearly	overlapping	motion/behavior	 relationships,	 and	as	 such,	 to	also	 reveal	
subtler	 relationships	 more	 specific	 to	 one	 or	 the	 other	 subtype	 of	 frames.	
Accordingly,	in	our	analyses	of	non-scrubbed	frames,	on	top	of	component	1,	two	
other	 more	 subtle	 components	 were	 exposed:	 component	 2	 specifically	
showcased	 γ	motion,	 clarifying	 its	 link	 to	 other	motion	 factors:	 those	 subjects	
that	move	more	along	γ	also	move	 less	along	other	directions	 (as	 indicated	by	
the	 negative	 signs	 in	 Figure	 4B).	 Those	 γ	 movers	 were	 not	 related	 to	 any	
anthropometric	quantity,	but	showed	sleep	disturbance,	high	cognitive	flexibility	
and	 spatial	 orientation	 performance,	 but	 also	 larger	 sustained	 attention	
response	times.	This	was	accompanied	by	a	wide	scope	of	elevated	psychometric	
scores,	 including	 anxiety,	 somatic	 problems,	 aggressiveness,	 intrusiveness,	
ADHD	 and	 hyper-responsiveness,	 as	 well	 as	 by	 alcohol	 consumption.	 We	
conjecture	 that	 this	 component	 reflects	 a	 hyper	 tendency,	 featuring	 agitated	
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subjects	 who	 will	 be	 disinhibited,	 efficient	 at	 on	 the	 moment	 tasks,	 but	 less	
capable	when	it	comes	to	temporally	sustained	abilities.	
	
I	need	something	clever	about	component	3...	
	
As	for	scrubbed	frames,	the	second	component	clearly	highlighted	lower	movers,	
as	confirmed	by	a	significant	negative	correlation	between	mean	FD	and	 latent	
scores.	Hence,	subtler	effects	normally	overshadowed	by	large	motions	could	be	
revealed,	 demonstrating	 that	 a	 larger	 repertoire	 of	 meta-states	 is	 visited	 by	
those	subjects	 that	are	both	taller	(as	reflected	by	a	 large	BMI	 (good)	 z-score)	
and	 exhibit	 a	 larger	 tendency	 towards	 rule	 breaking,	 greater	 hyper-
responsiveness,	 and	 worsened	 self-regulatory	 abilities.	 Thus,	 those	 subjects	
likely	do	not	obey	 the	 stay	still	guideline	as	 thoroughly,	 and	are	particularly	at	
risk	to	yield	larger	motion	effects	due	to	their	greater	height.	They	travel	a	lower	
overall	distance	because	the	meta-states	that	they	visit	are	similar	(that	is,	differ	
only	across	one	or	two	motion	parameters),	yet	they	explore	a	broader	array	of	
such	configurations.	
	
In	 1644,	 René	 Descartes,	 in	 quest	 for	 a	 primal	 principle	 at	 the	 root	 of	 all	
knowledge,	formulated	his	notorious	cogito	ergo	sum	(I	think,	hence	I	am)3.	375	
years	 later,	 we	 wish	 to	 summarize	 our	 findings	 by	 reformulating	 his	 words:	
agito	ergo	sum	(I	move,	hence	I	am).	By	this,	we	mean	that	the	defining	aspects	
of	someone	(one's	bodily	features,	abilities	to	interact	with	the	world	and	way	to	
respond	to	the	environment	around)	are	reflected,	in	subtle	and	various	ways,	in	
how	he	or	she	moves	during	scanning.		
	
This	has	strong	implications	regarding	RS	fMRI	studies:	indeed,	the	observation	
that	 a	 broad	 array	 of	 behavioral	 and	 psychometric	 characteristics	 relate	 to	
motion	implies	that	the	scope	of	studies	reporting	possibly	biased	findings	with	
regard	 to	 clinical	 or	 cognitive	 group-level	 comparisons	 is	 perhaps	much	wider	
than	envisaged	so	 far.	On	top	of	already	questioned	results	of	 fluid	 intelligence	
(Finn	et	al.	2015;	see	Figure	6	of	Siegel	et	al.	2017),	former	reports	focusing	on	
sustained	 attention	 (Rosenberg	 et	 al.	 2016)	 or	 extraversion	 (Hsu	 et	 al.	 2018)	
may	also	need	to	be	reconsidered.	At	the	end	of	the	day,	we	are	faced	with	a	sort	
of	chicken-and-egg	problem:	when	resorting	 to	 regression	strategies,	do	we	get	
rid	 of	 deleterious	 motion	 effects,	 or	 do	 we,	 perhaps,	 also	 remove	 neurally	
meaningful	signal?	
	
In	 addition,	 the	 presence	 of	 spatially	 distinct	 pools	 of	 movers	 (and	 their	
relationships	 to	 behavior/psychometrics)	 may	 also	 cast	 some	 doubts	 towards	
the	 accuracy	 of	 most	 motion	 denoising	 assessment	 approaches,	 which	
exclusively	rely	on	averaged	FD	over	time.	A	separate	assessment	across	motion	
parameters	 (or	 more	 elaborate	 approaches	 involving	 specific	 combinations)	
appears	 to	 be	 necessary	 to	 better	 understand	 which	 motion	 impacts	 are	
removed,	and	which	subsist	in	the	data.	Given	our	findings,	perhaps	the	motion	
leftovers	 remaining	 after	 even	 the	 most	 optimal	 preprocessing	 approaches	

																																																								
3	The	first	mention	of	that	particular	formulation	indeed	dates	back	from	the	Principia	
philosophiae,	published	in	1644.	



reflect	 the	 subtler	 components	 unraveled	 here	 (average	 FD	would,	 indeed,	 be	
expected	to	mostly	be	sensitive	to	the	global	motion	factor,	seen	as	component	
1),	 that	 is,	 overshadowed	 motion/behavior	 relationships	 generally	 masked	
beneath	larger	motion	contributions	(as	seen	with	component	2	of	our	scrubbed	
frames	analyses).	
	
Some	important	limitations	of	our	work	should	be	highlighted.	First,	we	explored	
regression	 and	 scrubbing,	 but	 did	 not	 consider	 other	 motion	 correction	
alternatives;	 they	 include	 original	 twists	 on	 traditional	 regression	 designs	
(Patriat	 et	 al.	 2015,	 Patriat	 et	 al.	 2017),	 more	 sophisticated	 variants	 over	
scrubbing	 (Patel	 et	 al.	 2015,	 Yang	 et	 al.	 2019),	 and	methods	 relying	on	 an	 ICA	
decomposition	of	the	data	(Salhimi-Korshidi	et	al.	2014,	Pruim	et	al.	2015).	
	
Second,	we	have	not	yet	pushed	our	exploration	to	the	level	of	fMRI	time	courses	
themselves,	but	focused	on	motion	estimates	only.	Our	aim,	with	this	report,	was	
not	 to	 design	 a	 new	 efficient	 motion	 correction	 strategy,	 but	 to	 dig	 into	 the	
complexity	of	motion	per	se,	and	by	this	mean,	put	forward	possible	caveats	and	
improvements	of	existing	approaches.	Our	codes	and	results	are	fully	available	at	
https://c4science.ch/source/MOT_ANA.git,	 and	 we	 encourage	 the	 interested	
researchers	to	extend	our	current	investigations	the	fMRI	signals	themselves.	
	
Third,	we	solely	considered	motion,	although	many	more	 factors	are	known	to	
corrupt	the	fMRI	signal	(Biancardi	et	al.	2009,	Birn	2012,	Liu	2016).	Particularly	
relevant	 to	 the	 present	 study	 is	 the	 recent	 work	 of	 Power	 et	 al.	 (2019),	 who	
showed	 that	 motion	 time	 courses	 from	 the	 HCP	 dataset	 contain	 an	 array	 of	
respiratory	 contributions.	 Given	 the	 impact	 of	 blood	 pressure	 on	 some	 of	 our	
components,	it	seems	likely	that	cardiac	or	respiratory	effects	indeed	contribute	
to	head	motion	variability.	
	
Future	motion	correction	strategies	 shall	 improve	over	current	ones	 in	 several	
ways:	first,	through	more	elaborate	acquisition	schemes,	such	as	with	multi-echo	
sequences	 (Power	 et	 al.	 2018);	 second,	 through	 the	 exploration	 of	 other	
complementary	denoising	strategies,	such	as	with	fMRI	simulators	(Drobjnak	et	
al.	2006)	or	prospective	correction	(Zaitsev	et	al.	2017);	third,	and	perhaps	most	
importantly,	through	an	efficient	cross-talk	across	those	strategies.	For	example,	
it	was	 recently	 shown	 that	 the	 use	 of	 customized	 head	molds	 reduces	motion	
during	 scanning	 on	 young	 subjects	 (Power	 et	 al.	 2019);	 this	 could	 be	 pushed	
further	 by	 orienting	 the	 design	 in	 subject-specific	 manner,	 using	 motion	
characteristics	such	as	the	ones	described	here.	
	
	 	



Conclusion	
In	 conclusion,	we	have	 shown	 that	motion	 in	 the	 fMRI	 scanner	during	 resting-
state	 acquisition	 is	 exquisitely	 complex,	 in	 its	 spatial	 as	 well	 as	 its	 temporal	
nature.	This	was	the	case	regardless	of	whether	we	considered	typically	excised	
time	 points,	 or	 the	 ones	 kept	 for	 subsequent	 analyses.	 We	 revealed	 how	 this	
spatiotemporal	 complexity	 of	 motion	 tightly	 relates	 to	 the	 anthropometric	
properties,	 behavioral	 specificities,	 and	 psychometric	 features	 of	 the	 subjects,	
and	thus,	wish	for	future	clinical	or	cognitive	fMRI	studies	to	account	for	motion-
related	caveats	in	more	elaborate	manners	than	currently	done.	 	
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Figure	legends	
	
Figure	1:	meta-state	characterization	on	scrubbed	frames.	(A)	Top	50	meta-
states,	 sorted	 in	 decreasing	 median	 occurrence	 across	 subjects.	 Red/blue	
denotes	 significant	 positive/negative	 motion,	 while	 white	 highlights	 non-
significant	changes.	(B)	Across	all	729	meta-states	(sorted	in	decreasing	median	
occurrence	 across	 subjects),	 percentage	 of	 subjects	 for	 which	 a	 meta-state	
showed	significant	occurrences	as	compared	to	null	data.	The	two	vertical	brown	
lines	highlight	two	transitions	across	meta-state	subtypes.	(C)	For	each	of	the	6	
motion	parameters,	cumulative	distribution	of	meta-states	(sorted	in	decreasing	
median	 occurrence	 across	 subjects)	 showing	 significant	 positive	 (top	 plot)	 or	
negative	 (bottom	 plot)	 motion	 excursions.	 The	 dashed	 lines	 indicate	 the	
expected	 rise	 for	 uniform	 presence	 regardless	 of	 meta-state	 occurrences.	 (D)	
Across	 all	 (non-sorted)	 meta-states	 (top	 matrix),	 or	 the	 top	 50	 meta-states	
(sorted	 in	 decreasing	 median	 occurrence	 across	 subjects),	 mean	 transition	
probability	 from	 start	 meta-state	 (rows)	 to	 end	 meta-state	 (columns).	 Color	
coding	 denotes	 transition	 probability	 percentages.	 (E)	 Distribution,	 across	
subjects,	of	metric	values	for	distance	traveled	in	meta-state	space	(left	boxplot)	
and	number	of	visited	meta-states	(right	boxplot).	
	
Figure	 2:	 groups	 of	 spatiotemporal	movers	 on	 non-scrubbed	 frames.	 (A)	
Dimensionally	 reduced	 representation	 of	 all	 224	 subjects,	 each	 depicted	 by	 a	
three-dimensional	box.	Box	width	along	the	first,	second	and	third	dimension	are	
proportional	to	the	average	motion	extent,	across	all	6	considered	time	bins,	 in	
the	X,	Y	and	Z	directions.	Color	coding	in	RGB	scale	is	proportional	to	the	extent	
of	motion	in	the	α	(red),	β	(green)	and	γ	(blue)	rotational	planes.	Edge	thickness	
of	the	boxes	is	proportional	to	the	slope	of	a	linear	fit	to	average	spatial	motion	
over	the	6	temporal	bins,	while	red/blue	symbolize	increased/decreased	motion	
over	 time.	 (B)	 Similar	 representation,	 with	 colors	 denoting	 the	 four	 different	
subgroups	of	movers.	(C)	 Simplified	 representation	of	 the	data	along	 time	and	
clusters	(top	row),	or	along	space	and	clusters	(bottom	row).	Error	bars	denote	
SEM.	
	
Figure	 3:	 univariate	 links	 between	 spatiotemporal	 motion	 and	
anthropometry/behavior/psychometrics	 on	 non-scrubbed	 frames.	 For	 all	
45	 considered	 scores,	 Fisher	 score	 in	 terms	 of	 discriminability	 across	 the	 four	
spatiotemporal	 mover	 groups.	 Horizontal	 bars	 denote	 significance	 thresholds,	
derived	non-parametrically	and	Bonferroni-corrected	for	45	tests.	
	
Figure	 4:	 multivariate	 links	 between	 spatiotemporal	 motion	 and	
anthropometry/behavior/psychometrics	 on	non-scrubbed	 frames.	Z-score	
reflecting	 the	 importance	 of	 the	 45	 assessed	
anthropometric/behavioral/psychometric	 domains	 (left)	 and	 the	 36	
spatiotemporal	motion	features	(right)	for	the	first	(A),	second	(B)	and	third	(C)	
components	from	a	PLS	analysis	(all	statistically	significant).	Dashed	horizontal	
lines	denote	 the	significance	 threshold	 (|z|>3),	and	 text	 labels	are	appended	 to	
the	 domain	 scores	 showing	 significance.	 t1	 to	 t6	 represent	 the	 first	 to	 sixth	
temporal	bins	of	a	session.	
	



Figure	 5:	 multivariate	 links	 between	 global	 motion	 features	 and	
anthropometry/behavior/psychometrics	 on	 scrubbed	 frames.	 Z-score	
reflecting	 the	 importance	 of	 the	 45	 assessed	
anthropometric/behavioral/psychometric	domains	(left)	and	the	2	 investigated	
global	motion	features	(right)	for	the	first	(A)	and	second	(B)	components	from	a	
PLS	 analysis	 (both	 statistically	 significant).	 Dashed	 horizontal	 lines	 denote	 the	
significance	threshold	(|z|>3),	and	text	labels	are	appended	to	the	domain	scores	
showing	 significance.	 Dist:	 total	 distance	 traveled	 in	 meta-state	 space;	 nStates:	
number	of	visited	meta-states.	


