Page MenuHomec4science

Translocation Statistics.py
No OneTemporary

File Metadata

Created
Fri, Nov 1, 03:03

Translocation Statistics.py

#Michael's Code modified for for Translocation Kinetics on Jochem's Event Detection
import numpy as np
import pandas as pd
import scipy.signal as sig
import Functions as f
import shelve
from sklearn.mixture import GaussianMixture as GMM
import os
import matplotlib.pyplot as plt
import matplotlib
import h5py
import seaborn as sns
from tkinter import Tk
from tkinter.filedialog import askopenfilenames
root = Tk()
root.withdraw()
from scipy.stats import gaussian_kde
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
filenames = askopenfilenames(filetypes=[('data files', '*.dat')], parent = root) # show an "Open" dialog box and return the path to the selected file
root.update()
Name = ''
cm = plt.cm.get_cmap('RdYlBu')
voltageLimits = [0.01, 0.51]
dwellrange = (0, 10)
dIrange = (0, 1)
FracDIRange = (0, 100)
count = 0
dt = {}
dIF = {}
count = {}
dt = np.array([])
dIF = np.array([])
dI = np.array([])
localBase = np.array([])
v = np.array([])
t = np.array([])
t2 = np.array([])
count = 0
##This part needs to be adapted to Jochem-style files
for file in filenames:
print(file)
fileNamewithourend, end = os.path.splitext(file)
shelfFile = shelve.open(fileNamewithourend)
event = shelfFile['translocationEvents']
dIF = np.append(dIF, np.array(event.GetAllIdropsNorm())*100)
dI = np.append(dI, np.array(event.GetAllIdrops())*1e9)
tempvoltage = np.array([])
templocalbaseline = np.array([])
tempeventlength = np.array([])
for ev in event.events:
tempvoltage = np.append(tempvoltage, ev.voltage)
templocalbaseline = np.append(templocalbaseline, ev.baseline)
tempeventlength = np.append(tempeventlength, ev.eventLength)
filepath = event.events[0].filename[19:].replace('2018 - CURRENT', '2018')
st = os.stat('/Volumes/'+filepath.replace('\\','/'))
dt = np.append(dt, tempeventlength*1e3)
t = np.append(t, st.st_birthtime * np.ones(len(event.GetAllIdropsNorm())))
t2 = np.append(t2, st.st_mtime * np.ones(len(event.GetAllIdropsNorm())))
v = np.append(v, tempvoltage)
count += len(event.GetAllIdropsNorm())
localBase = np.append(localBase, templocalbaseline*1e9/tempvoltage)
##
# Sort the voltages.
availableVoltages = np.unique(v[np.where((v > voltageLimits[0]) & (v < voltageLimits[1]))])
print(availableVoltages)
data = []
datadII0 = []
datalBase = []
dataDwell = []
dataRate = []
labels = []
NEvents = []
for vo in availableVoltages:
ind1 = np.argwhere(v == vo)
ind2 = np.intersect1d(ind1, np.argwhere((dt > dwellrange[0]) & (dt < dwellrange[1])))
ind = np.intersect1d(ind2, np.argwhere((dI > dIrange[0]) & (dI < dIrange[1])))
data.append(dI[ind])
datadII0.append(dIF[ind])
dataDwell.append(dt[ind])
datalBase.append(localBase[ind])
NEvents.append(len(ind))
if 1:
print('Modified-Written is applied')
if (np.max(t2[ind])-np.min(t[ind])) == 0:
dataRate.append(0)
else:
dataRate.append(len(ind)/(np.max(t2[ind])-np.min(t[ind])))
else:
if (np.max(t[ind])-np.min(t[ind])) == 0:
dataRate.append(0)
else:
dataRate.append(len(ind)/(np.max(t[ind])-np.min(t[ind])))
labels.append('{:0.0f}'.format(np.round(vo*1000)))
cond = np.array([])
for i,dati in enumerate(data):
cond = np.append(cond, dati/availableVoltages[i])
# Fractional Current Drop Scatter Plot
fig1 = plt.figure(1, figsize=(9, 6))
ax = fig1.add_subplot(111)
sc = ax.scatter(dt[np.where(v > 0)]*1e3, dIF[np.where(v > 0)], c=v[np.where(v > 0)], vmin=min(v[np.where(v > 0)]), vmax=max(v[np.where(v > 0)]), s=35, cmap=cm)
cbar = plt.colorbar(sc, ticks=availableVoltages)
cbar.ax.set_yticklabels(labels) # vertically oriented colorbar
ax.set_xlabel('Time (s)')
ax.set_ylabel('Current Drop dI/I0 (%)')
ax.set_title('{}\nScatter Plot, {} events'.format(Name, count))
#plt.show()
fig1.savefig(file[:-24] + 'ScatterFrac.pdf', transparent=True)
ax.set_xlim(0, 40000)
ax.set_ylim(0, 15)
fig1.savefig(file[:-24] + 'ScatterFracZoomed.pdf', transparent=True)
#fig1.clear()
#fig1.close()
# 1.Fractional Current Drop Scatter Plot
fig6 = plt.figure(6, figsize=(9, 6))
ax6 = fig6.add_subplot(111)
sc6 = ax6.scatter(dt[np.where(v > 0)], dI[np.where(v > 0)], c=v[np.where(v > 0)], vmin=min(v[np.where(v > 0)]), vmax=max(v[np.where(v > 0)]), s=35, cmap=cm)
cbar6 = plt.colorbar(sc6, ticks=availableVoltages)
cbar6.ax.set_yticklabels(labels) # vertically oriented colorbar
ax6.set_xlabel('Time (s)')
ax6.set_ylabel('Current Drop dI (nA)')
ax6.set_title('{}\nScatter Plot, {} events'.format(Name, count))
fig6.savefig(file[:-24] + 'ScatterdI.pdf', transparent=True)
#ax6.set_xlim(dwellrange)
#ax6.set_ylim(dIrange)
fig6.savefig(file[:-24] + 'ScatterdIZoomed.pdf', transparent=True)
plt.show()
#fig1.clear()
#fig1.close()
# 2.BoxPlot Delta I vs Voltages
fig2 = plt.figure(2, figsize=(9, 6))
ax2 = fig2.add_subplot(111)
bp = ax2.boxplot(data, notch=True, autorange=True, sym='', whis=1)
ax2.set_xlabel('Voltage (mV)')
ax2.set_ylabel('Current Drop dI (nA)')
ax2.set_title('{}\nBoxplot (outliers removed)\n{} events'.format(Name, count))
ax2.set_xticklabels(labels)
ax2.get_xaxis().tick_bottom()
ax2.get_yaxis().tick_left()
fig2.savefig(file[:-24] + 'BoxplotdI.pdf', transparent=True)
# 3.BoxPlot DwellTime vs Voltages
fig3 = plt.figure(3, figsize=(9, 6))
ax3 = fig3.add_subplot(111)
bp = ax3.boxplot(dataDwell, notch=True, autorange=True, sym='', whis=1)
ax3.set_xlabel('Voltage (mV)')
ax3.set_ylabel('Dwell Time dt (ms)')
ax3.set_title('{}\nBoxplot (outliers removed)\n{} events'.format(Name, count))
ax3.set_xticklabels(labels)
ax3.get_xaxis().tick_bottom()
ax3.get_yaxis().tick_left()
fig3.savefig(file[:-24] + 'BoxplotDwellTime.pdf', transparent=True)
# 4.BoxPlot Event Rate vs Voltages
fig4 = plt.figure(4, figsize=(9, 6))
ax4 = fig4.add_subplot(111)
bp = ax4.bar(np.arange(len(dataRate)), dataRate)
ax4.set_xlabel('Voltage (mV)')
ax4.set_ylabel('Event Rate (Hz)')
ax4.set_title('{}\Barplot\n{} events'.format(Name, count))
ax4.set_xticks(np.arange(len(dataRate)))
ax4.set_xticklabels(labels)
ax4.get_xaxis().tick_bottom()
ax4.get_yaxis().tick_left()
fig4.savefig(file[:-24] + 'BarplotEventRate.pdf', transparent=True)
# 5.Bar Plot Event Number vs Voltages
fig5 = plt.figure(5, figsize=(9, 6))
ax5 = fig5.add_subplot(111)
print(NEvents)
bp = ax5.bar(np.arange(len(NEvents)), NEvents)
ax5.set_xlabel('Voltage (mV)')
ax5.set_ylabel('Number Of Events')
ax5.set_title('{}\nBarplot\n{} events'.format(Name, count))
ax5.set_xticks(np.arange(len(NEvents)))
ax5.set_xticklabels(labels)
ax5.get_xaxis().tick_bottom()
ax5.get_yaxis().tick_left()
fig5.savefig(file[:-24] + 'BarplotEventNumber.pdf', transparent=True)
# 7.BoxPlot Delta I vs Voltages
fig7 = plt.figure(7, figsize=(9, 6))
ax7 = fig7.add_subplot(111)
bp = ax7.boxplot(datadII0, notch=True, autorange=True, sym='', whis=1)
ax7.set_xlabel('Voltage (mV)')
ax7.set_ylabel('Current Drop dI/I0 (%)')
ax7.set_title('{}\nBoxplot (outliers removed)\n{} events'.format(Name, count))
ax7.set_xticklabels(labels)
ax7.get_xaxis().tick_bottom()
ax7.get_yaxis().tick_left()
fig7.savefig(file[:-24] + 'BoxplotdII0.pdf', transparent=True)
# 8.Histogram DwellTime vs Voltages
fig8 = plt.figure(8, figsize=(6, 12))
for i,dati in enumerate(dataDwell):
ax8 = fig8.add_subplot(len(dataDwell), 1, i+1)
n, bins, patches = ax8.hist(x=dati, bins = 'auto', alpha=0.7, rwidth=0.85)
ax8.grid(axis='y', alpha=0.75)
ax8.set_xlabel('Dwell Time (ms)')
ax8.set_ylabel('Frequency')
ax8.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax8.set_xlim(left=np.min(np.concatenate(dataDwell).ravel()), right=np.max(np.concatenate(dataDwell).ravel()))
fig8.savefig(file[:-24] + 'HistogramDwellTime.pdf', transparent=True)
# 9.Histogram DwellTime vs Voltages
fig9 = plt.figure(9, figsize=(6, 12))
for i,dati in enumerate(data):
ax9 = fig9.add_subplot(len(data), 1, i+1)
n, bins, patches = ax9.hist(x=dati, bins = 'auto', alpha=0.7, rwidth=0.85)
ax9.grid(axis='y', alpha=0.75)
ax9.set_xlabel('Current Drop (nA)')
ax9.set_ylabel('Frequency')
# ax9.set_xlim(0, 2)
ax9.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax9.set_xlim(left=np.min(np.concatenate(data).ravel()), right=np.max(np.concatenate(data).ravel()))
fig9.savefig(file[:-24] + 'HistogramCurrentDrop.pdf', transparent=True)
plt.style.use("seaborn-darkgrid")
# 10 KDE DwellTime vs Voltages
fig10 = plt.figure(10, figsize=(6, 12))
for i, dati in enumerate(dataDwell):
ax10 = fig10.add_subplot(len(dataDwell), 1, i+1)
ax10 = sns.distplot(dati)
ax10.set_xlabel('Dwell Time (ms)')
ax10.set_ylabel('Frequency')
ax10.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax10.set_xlim(left=np.min(np.concatenate(dataDwell).ravel()), right=np.max(np.concatenate(dataDwell).ravel()))
fig10.savefig(file[:-24] + 'KDEDwellTime.pdf')#, transparent=True)
# 11 KDE DwellTime vs Voltages
fig11 = plt.figure(11, figsize=(6, 12))
for i,dati in enumerate(data):
ax11 = fig11.add_subplot(len(data), 1, i+1)
ax11 = sns.distplot(dati)
ax11.set_xlabel('Current Drop (nA)')
ax11.set_ylabel('Frequency')
# ax11.set_xlim(0, 2)
ax11.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax11.set_xlim(left=np.min(np.concatenate(data).ravel()), right=np.max(np.concatenate(data).ravel()))
fig11.savefig(file[:-24] + 'KDECurrentDrop.pdf')#, transparent=True)
# 17 KDE DwellTime vs Voltages
fig17 = plt.figure(17, figsize=(6, 12))
for i,dati in enumerate(datadII0):
ax17 = fig17.add_subplot(len(datadII0), 1, i+1)
ax17 = sns.distplot(dati)
ax17.set_xlabel('Current Drop (nA)')
ax17.set_ylabel('Frequency')
ax17.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
# ax17.set_xlim(left=0, right=100)
fig17.savefig(file[:-24] + 'KDECurrentDropdII0.pdf')#, transparent=True)
# 18 KDE DwellTime vs Voltages
fig18 = plt.figure(18, figsize=(6, 12))
for i, dati in enumerate(data):
ax18 = fig18.add_subplot(len(data), 1, i+1)
ax18 = sns.distplot(dati/availableVoltages[i])
ax18.set_xlabel('Conductance Drop (nS)')
ax18.set_ylabel('Frequency')
ax18.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax18.set_xlim(left=np.min(cond), right=np.max(cond))
fig18.savefig(file[:-24] + 'KDEConductanceDrop.pdf')#, transparent=True)
# 15 BiVariate KDE plot Individual
fig15 = plt.figure(15, figsize=(9, 9))
for i,dati in enumerate(data):
ax15 = fig15.add_subplot(2, 2, i + 1)
# cmap = sns.cubehelix_palette(as_cmap=True, dark=0, light=1, reverse=True)
ax15 = sns.kdeplot(dataDwell[i]*1e-3, dati*1e-9, shade=True, cbar=True, cut=0, cmap='rainbow', n_levels=60, reverse=False, shade_lowest=True, label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax15.set_ylabel('Current Drop (nA)')
ax15.set_xlabel('Dwell Time (ms)')
ax15.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
# ax15.set_xlim(left=np.min(np.concatenate(dataDwell).ravel())-1, right=np.max(np.concatenate(dataDwell).ravel())+1)
# ax15.set_ylim(bottom=np.min(np.concatenate(data).ravel())-1, top=np.max(np.concatenate(data).ravel()))
# Set graph limits manually
#ax15.set_xlim(0, 4)
# ax15.set_ylim(0, 1)
fig15.savefig(file[:-24] + 'KDEScatterIndividualdI.pdf')#, transparent=True)
# BiVariate KDE plot Individual Fractional
fig16 = plt.figure(16, figsize=(9, 9))
for i,dati in enumerate(datadII0):
ax16 = fig16.add_subplot(2, 2, i + 1)
ax16 = sns.kdeplot(dataDwell[i], dati, shade=True, cbar=True, cmap='gist_heat', shade_lowest=False, label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax16.set_ylabel('Fractional Current Drop (dI/I0)')
ax16.set_xlabel('Dwell Time (ms)')
ax16.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax16.set_xlim(left=np.min(np.concatenate(dataDwell).ravel())-1, right=np.max(np.concatenate(dataDwell).ravel())+1)
ax16.set_ylim(bottom=-5, top=100)
# Set graph limits manually
# ax16.set_xlim(0, 8)
# ax16.set_ylim(0, 8)
fig16.savefig(file[:-24] + 'KDEScatterIndividualdIdI0.pdf')#, transparent=True)
# BiVariate KDE plot Individual
fig19 = plt.figure(19, figsize=(9, 9))
for i,dati in enumerate(data):
ax19 = fig19.add_subplot(2, 2, i + 1)
ax19 = sns.kdeplot(dataDwell[i], dati/availableVoltages[i], cbar=True, cmap='gist_heat', shade=True, shade_lowest=False, label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax19.set_ylabel('Conductance Drop (nS)')
ax19.set_xlabel('Dwell Time (ms)')
ax19.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax19.set_xlim(left=np.min(np.concatenate(dataDwell).ravel())-1, right=np.max(np.concatenate(dataDwell).ravel())+1)
ax19.set_ylim(bottom=np.min(cond)-1, top=np.max(cond))
# Set graph limits manually
# ax19.set_xlim(0, )
# ax19.set_ylim(0, )
fig19.savefig(file[:-24] + 'KDEScatterConductanceDrop.pdf')#, transparent=True)
matplotlib.rcParams['font.size'] = 22
# KDE DwellTime vs Voltages ALL on One
fig12 = plt.figure(12, figsize=(16, 9))
ax12 = fig12.add_subplot(111)
for i, dati in enumerate(dataDwell):
ax12 = sns.distplot(dati, label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax12.legend()
ax12.set_xlabel('Dwell Time (ms)')
ax12.set_ylabel('Frequency')
ax12.set_title('Dwell Time Histograms')
ax12.set_xlim(left=np.min(np.concatenate(dataDwell).ravel()), right=np.max(np.concatenate(dataDwell).ravel()))
# ax12.set_xlim(0, 2)
fig12.savefig(file[:-24] + 'KDESingleDwellTime.pdf')#, transparent=True)
# KDE DwellTime vs Voltages ALL on One
fig13 = plt.figure(13, figsize=(16, 9))
ax13 = fig13.add_subplot(111)
for i,dati in enumerate(data):
ax13 = sns.distplot(dati, label='{}mV'.format(str(int(availableVoltages[i]*1e3)), norm_hist=True, hist=True))
ax13.legend()
ax13.set_xlabel('Current Drop (nA)')
ax13.set_ylabel('Frequency')
ax13.set_title('Current Drop Histograms')
ax13.set_xlim(left=np.min(np.concatenate(data).ravel()), right=np.max(np.concatenate(data).ravel()))
fig13.savefig(file[:-24] + 'KDESingleCurrentDrop.pdf')#, transparent=True)
# KDE DwellTime vs Voltages ALL on One
fig20 = plt.figure(20, figsize=(16, 9))
ax20 = fig20.add_subplot(111)
for i,dati in enumerate(data):
ax20 = sns.distplot(dati/availableVoltages[i], label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax20.legend()
ax20.set_xlabel('Conductance Drop (nS)')
ax20.set_ylabel('Frequency')
ax20.set_title('Conductance Drop Histograms')
ax20.set_xlim(left=np.min(cond), right=np.max(cond))
fig20.savefig(file[:-24] + 'KDESingleConductanceDrop.pdf')#, transparent=True)
# BiVariate KDE plot All In One
fig14 = plt.figure(14, figsize=(9, 9))
ax14 = fig14.add_subplot(111)
for i,dati in enumerate(data):
ax14 = sns.kdeplot(dataDwell[i], dati, shade=True, shade_lowest=False, label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax14.legend()
ax14.set_ylabel('Current Drop (nA)')
ax14.set_xlabel('Dwell Time (ms)')
ax14.set_title('KDE Scatter')
# Set graph limits
# ax14.set_xlim(0, 8)
# ax14.set_ylim(0, 5)
#ax14.set_xlim(left=np.min(np.concatenate(data).ravel()), right=np.max(np.concatenate(data).ravel()))
fig14.savefig(file[:-24] + 'KDEScatterdI.pdf')#, transparent=True)
# BiVariate KDE plot All In One
fig21 = plt.figure(21, figsize=(9, 9))
ax21 = fig21.add_subplot(111)
for i,dati in enumerate(data):
ax21 = sns.kdeplot(dataDwell[i], dati/availableVoltages[i], shade=True, shade_lowest=False, label='{}mV'.format(str(int(availableVoltages[i]*1e3))))
ax21.legend()
ax21.set_ylabel('Conductance Drop (nA)')
ax21.set_xlabel('Dwell Time (ms)')
ax21.set_title('KDE Scatter')
# ax21.set_xlim(0, 8)
ax21.set_ylim(0, 5)
#ax21.set_xlim(left=np.min(np.concatenate(data).ravel()), right=np.max(np.concatenate(data).ravel()))
fig21.savefig(file[:-24] + 'KDEScatterConductance.pdf')#, transparent=True)
# KDE DwellTime vs Voltages
fig22 = plt.figure(22, figsize=(6, 12))
for i, dati in enumerate(datalBase):
ax22 = fig22.add_subplot(len(data), 1, i+1)
ax22 = sns.distplot(dati)
ax22.set_xlabel('Conductance (nS)')
ax22.set_ylabel('Frequency')
# ax22.set_xlim(0, 50)
ax22.set_title('{}mV'.format(int(availableVoltages[i]*1e3)))
ax22.set_xlim(left=-10, right=50)#np.min(np.concatenate(datalBase).ravel()), right=np.max(np.concatenate(datalBase).ravel()))
fig22.savefig(file[:-24] + 'LocalBaseline.pdf')#, transparent=True)

Event Timeline