Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92669343
membraneTaylor.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 22, 14:48
Size
3 KB
Mime Type
text/x-python
Expires
Sun, Nov 24, 14:48 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22483560
Attached To
R6746 RationalROMPy
membraneTaylor.py
View Options
import
fenics
as
fen
import
numpy
as
np
from
rrompy.hfengines.base
import
HelmholtzProblemEngine
as
HPE
from
rrompy.reduction_methods.taylor
import
ApproximantTaylorPade
as
TP
from
rrompy.utilities.parameter_sweeper
import
ParameterSweeper
as
Sweeper
verb
=
0
test
=
"poles"
test
=
"error"
k0
=
10
ktars
=
np
.
linspace
(
78
**.
5
,
122
**.
5
,
50
)
def
boundaryNeumann
(
x
,
on_boundary
):
return
on_boundary
and
x
[
1
]
>
.
25
and
x
[
0
]
>
0.995
and
x
[
0
]
<
1.005
meshname
=
'../data/mesh/crack_coarse.xml'
#meshname = '../data/mesh/crack_fine.xml'
mesh
=
fen
.
Mesh
(
meshname
)
x
,
y
=
fen
.
SpatialCoordinate
(
mesh
)[:]
x0
,
y0
=
.
5
,
.
5
Rr
,
Ri
=
.
1
,
.
1
forcingTerm
=
fen
.
exp
(
-
((
x
-
x0
)
**
2
+
(
y
-
y0
)
**
2
)
/
2
/
Rr
**
2
)
solver
=
HPE
(
verbosity
=
verb
)
solver
.
omega
=
np
.
real
(
k0
)
solver
.
V
=
fen
.
FunctionSpace
(
mesh
,
"P"
,
3
)
solver
.
forcingTerm
=
forcingTerm
solver
.
NeumannBoundary
=
boundaryNeumann
solver
.
DirichletBoundary
=
'rest'
if
test
==
"poles"
:
appPoles
=
{}
Emax
=
13
params
=
{
'N'
:
6
,
'M'
:
0
,
'E'
:
6
,
'Emax'
:
Emax
,
'sampleType'
:
'Arnoldi'
,
'POD'
:
True
}
approxPade
=
TP
(
solver
,
mu0
=
k0
,
approxParameters
=
params
,
verbosity
=
verb
)
for
E
in
range
(
6
,
Emax
+
1
):
approxPade
.
E
=
E
appPoles
[
E
]
=
np
.
sort
(
approxPade
.
getPoles
())
a
=
fen
.
dot
(
fen
.
grad
(
solver
.
u
),
fen
.
grad
(
solver
.
v
))
*
fen
.
dx
A
=
fen
.
assemble
(
a
)
fen
.
DirichletBC
(
solver
.
V
,
fen
.
Constant
(
0.
),
solver
.
DirichletBoundary
)
.
apply
(
A
)
AMat
=
fen
.
as_backend_type
(
A
)
.
mat
()
Ar
,
Ac
,
Av
=
AMat
.
getValuesCSR
()
import
scipy.sparse
as
scsp
A
=
scsp
.
csr_matrix
((
Av
,
Ac
,
Ar
),
shape
=
AMat
.
size
)
m
=
fen
.
dot
(
solver
.
u
,
solver
.
v
)
*
fen
.
dx
M
=
fen
.
assemble
(
m
)
fen
.
DirichletBC
(
solver
.
V
,
fen
.
Constant
(
0.
),
solver
.
DirichletBoundary
)
.
apply
(
M
)
MMat
=
fen
.
as_backend_type
(
M
)
.
mat
()
Mr
,
Mc
,
Mv
=
MMat
.
getValuesCSR
()
import
scipy.sparse
as
scsp
M
=
scsp
.
csr_matrix
((
Mv
,
Mc
,
Mr
),
shape
=
MMat
.
size
)
poles
=
scsp
.
linalg
.
eigs
(
A
,
k
=
7
,
M
=
M
,
sigma
=
100.
,
return_eigenvectors
=
False
)
II
=
np
.
argsort
(
np
.
abs
(
poles
-
k0
))
poles
=
poles
[
II
]
print
(
'Exact'
,
end
=
': '
)
[
print
(
'{},{}'
.
format
(
np
.
real
(
x
),
np
.
imag
(
x
)),
end
=
','
)
for
x
in
poles
]
print
()
for
E
in
range
(
6
,
Emax
+
1
):
print
(
E
,
end
=
': '
)
[
print
(
'{},{}'
.
format
(
np
.
real
(
x
),
np
.
imag
(
x
)),
end
=
','
)
\
for
x
in
np
.
sort
(
appPoles
[
E
])]
print
()
elif
test
==
"error"
:
M0
=
5
Emax
=
8
params
=
{
'Emax'
:
Emax
,
'sampleType'
:
'Arnoldi'
,
'POD'
:
True
}
paramsSetsPade
=
[
None
]
*
(
Emax
-
M0
+
1
)
for
M
in
range
(
M0
,
Emax
+
1
):
paramsSetsPade
[
M
-
M0
]
=
{
'N'
:
M0
+
1
,
'M'
:
M
,
'E'
:
max
(
M
,
M0
+
1
)}
approxPade
=
TP
(
solver
,
mu0
=
k0
,
approxParameters
=
params
,
verbosity
=
verb
)
sweeper
=
Sweeper
(
mutars
=
ktars
,
mostExpensive
=
'Approx'
)
sweeper
.
ROMEngine
=
approxPade
sweeper
.
params
=
paramsSetsPade
filenamePade
=
sweeper
.
sweep
(
'../data/output/membrane_error.dat'
,
outputs
=
'ALL'
)
sweeper
.
plot
(
filenamePade
,
[
'muRe'
],
[
'normHF'
,
'normApp'
],
[
'M'
],
onePlot
=
True
)
sweeper
.
plot
(
filenamePade
,
[
'muRe'
],
[
'normErr'
],
[
'M'
])
Event Timeline
Log In to Comment