Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102208706
scattering_problem_engine.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 07:09
Size
6 KB
Mime Type
text/x-python
Expires
Thu, Feb 20, 07:09 (2 d)
Engine
blob
Format
Raw Data
Handle
24275555
Attached To
R6746 RationalROMPy
scattering_problem_engine.py
View Options
# Copyright (C) 2018 by the RROMPy authors
#
# This file is part of RROMPy.
#
# RROMPy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RROMPy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RROMPy. If not, see <http://www.gnu.org/licenses/>.
#
import
numpy
as
np
import
scipy.sparse
as
scsp
import
fenics
as
fen
from
rrompy.utilities.base.types
import
Np1D
,
Np2D
,
Tuple
,
List
from
rrompy.utilities.base.fenics
import
fenZERO
from
.helmholtz_base_problem_engine
import
HelmholtzBaseProblemEngine
__all__
=
[
'ScatteringProblemEngine'
]
class
ScatteringProblemEngine
(
HelmholtzBaseProblemEngine
):
"""
Solver for scattering problems with parametric wavenumber.
- \nabla \cdot (a \nabla u) - omega^2 * n**2 * u = f in \Omega
u = u0 on \Gamma_D
\partial_nu = g1 on \Gamma_N
\partial_nu +- i k u = g2 on \Gamma_R
Attributes:
signR: Sign in ABC.
omega: Value of omega.
diffusivity: Value of a.
refractionIndex: Value of n.
forcingTerm: Value of f.
DirichletDatum: Value of u0.
NeumannDatum: Value of g1.
RobinDatumG: Value of g2.
DirichletBoundary: Function handle to \Gamma_D.
NeumannBoundary: Function handle to \Gamma_N.
RobinBoundary: Function handle to \Gamma_R.
V: Real FE space.
u: Generic trial functions for variational form evaluation.
v: Generic test functions for variational form evaluation.
ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries).
A0: Scipy sparse array representation (in CSC format) of A0.
A1: Scipy sparse array representation (in CSC format) of A1.
A2: Scipy sparse array representation (in CSC format) of A1.
b0: Numpy array representation of b0.
As: Scipy sparse array representation (in CSC format) of As.
bs: Numpy array representation of bs.
"""
signR
=
-
1.
def
A
(
self
,
mu
:
complex
,
der
:
int
=
0
)
->
Np2D
:
"""Assemble (derivative of) operator of linear system."""
if
der
>
2
or
der
<
0
:
d
=
self
.
V
.
dim
()
return
scsp
.
csr_matrix
((
np
.
zeros
(
0
),
np
.
zeros
(
0
),
np
.
zeros
(
d
+
1
)),
shape
=
(
d
,
d
),
dtype
=
np
.
complex
)
self
.
autoSetDS
()
if
der
<=
0
and
not
hasattr
(
self
,
"A0"
):
DirichletBC0
=
fen
.
DirichletBC
(
self
.
V
,
fenZERO
,
self
.
DirichletBoundary
)
aRe
,
aIm
=
self
.
diffusivity
a0Re
=
aRe
*
fen
.
dot
(
fen
.
grad
(
self
.
u
),
fen
.
grad
(
self
.
v
))
*
fen
.
dx
a0Im
=
aIm
*
fen
.
dot
(
fen
.
grad
(
self
.
u
),
fen
.
grad
(
self
.
v
))
*
fen
.
dx
A0Re
=
fen
.
assemble
(
a0Re
)
A0Im
=
fen
.
assemble
(
a0Im
)
DirichletBC0
.
apply
(
A0Re
)
DirichletBC0
.
zero
(
A0Im
)
A0ReMat
=
fen
.
as_backend_type
(
A0Re
)
.
mat
()
A0ImMat
=
fen
.
as_backend_type
(
A0Im
)
.
mat
()
A0Rer
,
A0Rec
,
A0Rev
=
A0ReMat
.
getValuesCSR
()
A0Imr
,
A0Imc
,
A0Imv
=
A0ImMat
.
getValuesCSR
()
self
.
A0
=
(
scsp
.
csr_matrix
((
A0Rev
,
A0Rec
,
A0Rer
),
shape
=
A0ReMat
.
size
)
+
1.j
*
scsp
.
csr_matrix
((
A0Imv
,
A0Imc
,
A0Imr
),
shape
=
A0ImMat
.
size
))
if
der
<=
1
and
not
hasattr
(
self
,
"A1"
):
DirichletBC0
=
fen
.
DirichletBC
(
self
.
V
,
fenZERO
,
self
.
DirichletBoundary
)
a1
=
fen
.
dot
(
self
.
u
,
self
.
v
)
*
self
.
ds
(
1
)
A1
=
fen
.
assemble
(
a1
)
DirichletBC0
.
zero
(
A1
)
A1Mat
=
fen
.
as_backend_type
(
A1
)
.
mat
()
A1r
,
A1c
,
A1v
=
A1Mat
.
getValuesCSR
()
self
.
A1
=
self
.
signR
*
1.j
*
scsp
.
csr_matrix
((
A1v
,
A1c
,
A1r
),
shape
=
A1Mat
.
size
)
if
der
<=
2
and
not
hasattr
(
self
,
"A2"
):
DirichletBC0
=
fen
.
DirichletBC
(
self
.
V
,
fenZERO
,
self
.
DirichletBoundary
)
nRe
,
nIm
=
self
.
refractionIndex
n2Re
,
n2Im
=
nRe
*
nRe
-
nIm
*
nIm
,
2
*
nRe
*
nIm
a2Re
=
-
n2Re
*
fen
.
dot
(
self
.
u
,
self
.
v
)
*
fen
.
dx
a2Im
=
-
n2Im
*
fen
.
dot
(
self
.
u
,
self
.
v
)
*
fen
.
dx
A2Re
=
fen
.
assemble
(
a2Re
)
A2Im
=
fen
.
assemble
(
a2Im
)
DirichletBC0
.
zero
(
A2Re
)
DirichletBC0
.
zero
(
A2Im
)
A2ReMat
=
fen
.
as_backend_type
(
A2Re
)
.
mat
()
A2ImMat
=
fen
.
as_backend_type
(
A2Im
)
.
mat
()
A2Rer
,
A2Rec
,
A2Rev
=
A2ReMat
.
getValuesCSR
()
A2Imr
,
A2Imc
,
A2Imv
=
A2ImMat
.
getValuesCSR
()
self
.
A2
=
(
scsp
.
csr_matrix
((
A2Rev
,
A2Rec
,
A2Rer
),
shape
=
A2ReMat
.
size
)
+
1.j
*
scsp
.
csr_matrix
((
A2Imv
,
A2Imc
,
A2Imr
),
shape
=
A2ImMat
.
size
))
if
der
==
0
:
return
self
.
A0
+
mu
*
self
.
A1
+
mu
**
2.
*
self
.
A2
if
der
==
1
:
return
self
.
A1
+
2
*
mu
*
self
.
A2
return
self
.
A2
def
affineBlocksA
(
self
,
mu
:
complex
=
0.
)
->
Tuple
[
List
[
Np2D
],
callable
]:
"""Assemble affine blocks of operator of linear system."""
def
lambdas
(
x
,
j
):
if
j
==
0
:
return
np
.
ones
(
np
.
size
(
x
))
if
j
in
[
1
,
2
]:
return
np
.
power
(
self
.
rescaling
(
x
)
-
self
.
rescaling
(
mu
),
j
)
raise
Exception
(
"Wrong j value."
)
A0
=
self
.
A
(
mu
,
0
)
A1
=
self
.
A
(
mu
,
1
)
return
[
A0
,
A1
,
self
.
A2
],
lambdas
def
affineBlocksb
(
self
,
mu
:
complex
=
0.
)
->
Tuple
[
List
[
Np1D
],
callable
]:
"""Assemble affine blocks of RHS of linear system."""
def
lambdas
(
x
,
j
):
if
j
==
0
:
return
np
.
ones
(
np
.
size
(
x
))
raise
Exception
(
"Wrong j value."
)
self
.
b
(
mu
,
0
)
return
[
self
.
b0
],
lambdas
Event Timeline
Log In to Comment