Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91927906
fenics_norms.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 15, 19:46
Size
4 KB
Mime Type
text/x-python
Expires
Sun, Nov 17, 19:46 (2 d)
Engine
blob
Format
Raw Data
Handle
22348918
Attached To
R6746 RationalROMPy
fenics_norms.py
View Options
# Copyright (C) 2018 by the RROMPy authors
#
# This file is part of RROMPy.
#
# RROMPy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RROMPy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RROMPy. If not, see <http://www.gnu.org/licenses/>.
#
import
numpy
as
np
import
fenics
as
fen
from
rrompy.solver.fenics
import
(
L2NormMatrix
,
H1NormMatrix
,
Hminus1NormMatrix
,
elasticNormMatrix
,
elasticDualNormMatrix
)
def
test_fenics_L2
():
V
=
fen
.
FunctionSpace
(
fen
.
UnitSquareMesh
(
3
,
3
),
"P"
,
3
)
u
=
fen
.
interpolate
(
fen
.
Constant
(
3.
),
V
)
v
=
fen
.
interpolate
(
fen
.
Expression
(
"x[0]*x[0]+x[1]"
,
degree
=
2
),
V
)
uv
=
u
.
vector
()[:]
vv
=
v
.
vector
()[:]
mass
=
L2NormMatrix
(
V
)
inner
=
fen
.
assemble
(
fen
.
dot
(
u
,
v
)
*
fen
.
dx
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
mass
.
dot
(
vv
)),
2.5
,
rtol
=
1e-8
)
assert
np
.
isclose
(
inner
,
2.5
,
rtol
=
1e-8
)
def
test_fenics_H1
():
V
=
fen
.
FunctionSpace
(
fen
.
UnitSquareMesh
(
3
,
3
),
"P"
,
2
)
u
=
fen
.
interpolate
(
fen
.
Expression
(
"x[0]+exp(x[1])"
,
degree
=
4
),
V
)
v
=
fen
.
interpolate
(
fen
.
Expression
(
"x[0]*x[0]+x[1]"
,
degree
=
2
),
V
)
uv
=
u
.
vector
()[:]
vv
=
v
.
vector
()[:]
stiffness
=
H1NormMatrix
(
V
)
helmholtz
=
H1NormMatrix
(
V
,
12
)
inners
=
fen
.
assemble
(
fen
.
dot
(
fen
.
grad
(
u
),
fen
.
grad
(
v
))
*
fen
.
dx
)
innerh
=
12
*
fen
.
assemble
(
fen
.
dot
(
u
,
v
)
*
fen
.
dx
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
stiffness
.
dot
(
vv
)),
np
.
exp
(
1
),
rtol
=
1e-6
)
assert
np
.
isclose
(
inners
,
np
.
exp
(
1
),
rtol
=
1e-6
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
helmholtz
.
dot
(
vv
)),
5
*
np
.
exp
(
1
)
+
14
,
rtol
=
1e-3
)
assert
np
.
isclose
(
inners
+
innerh
,
5
*
np
.
exp
(
1
)
+
14
,
rtol
=
1e-3
)
def
test_fenics_Hminus1
():
V
=
fen
.
FunctionSpace
(
fen
.
UnitSquareMesh
(
3
,
3
),
"P"
,
2
)
u
=
fen
.
interpolate
(
fen
.
Expression
(
"x[0]+exp(x[1])"
,
degree
=
4
),
V
)
v
=
fen
.
interpolate
(
fen
.
Expression
(
"x[0]*x[0]+x[1]"
,
degree
=
2
),
V
)
uv
=
u
.
vector
()[:]
vv
=
v
.
vector
()[:]
energyFull
=
Hminus1NormMatrix
(
V
,
12
)
energyLR
=
Hminus1NormMatrix
(
V
,
12
,
compressRank
=
20
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
energyFull
.
dot
(
vv
)),
uv
.
T
.
dot
(
energyLR
.
dot
(
vv
)),
rtol
=
1e-2
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
energyFull
.
dot
(
vv
)),
.
1641618355
,
rtol
=
1e-6
)
def
test_fenics_elastic
():
V
=
fen
.
VectorFunctionSpace
(
fen
.
UnitCubeMesh
(
5
,
5
,
5
),
"P"
,
1
)
l_
=
1.
m_
=
fen
.
Expression
(
".5*x[0]+1."
,
degree
=
1
)
u
=
fen
.
interpolate
(
fen
.
Expression
((
"exp(x[1])"
,
"x[0]-x[2]"
,
"3."
),
degree
=
4
),
V
)
v
=
fen
.
interpolate
(
fen
.
Expression
((
"x[0]*x[0]+x[2]"
,
"1."
,
"-1. * x[1]"
),
degree
=
2
),
V
)
uv
=
u
.
vector
()[:]
vv
=
v
.
vector
()[:]
energyMat
=
elasticNormMatrix
(
V
,
l_
,
m_
,
10
)
epsilon
=
lambda
f
:
0.5
*
(
fen
.
grad
(
f
)
+
fen
.
nabla_grad
(
f
))
sigma
=
(
l_
*
fen
.
div
(
u
)
*
fen
.
Identity
(
3
)
+
2.
*
m_
*
epsilon
(
u
))
energy
=
fen
.
assemble
((
10
*
fen
.
dot
(
u
,
v
)
+
fen
.
inner
(
sigma
,
epsilon
(
v
)))
*
fen
.
dx
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
energyMat
.
dot
(
vv
)),
energy
,
rtol
=
1e-8
)
def
test_fenics_elastic_dual
():
V
=
fen
.
VectorFunctionSpace
(
fen
.
UnitCubeMesh
(
5
,
5
,
5
),
"P"
,
1
)
l_
=
1.
m_
=
fen
.
Expression
(
".5*x[0]+1."
,
degree
=
1
)
u
=
fen
.
interpolate
(
fen
.
Expression
((
"exp(x[1])"
,
"x[0]-x[2]"
,
"3."
),
degree
=
4
),
V
)
v
=
fen
.
interpolate
(
fen
.
Expression
((
"x[0]*x[0]+x[2]"
,
"1."
,
"-1. * x[1]"
),
degree
=
2
),
V
)
uv
=
u
.
vector
()[:]
vv
=
v
.
vector
()[:]
energyFull
=
elasticDualNormMatrix
(
V
,
l_
,
m_
,
10
)
energyLR
=
elasticDualNormMatrix
(
V
,
l_
,
m_
,
10
,
compressRank
=
50
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
energyFull
.
dot
(
vv
)),
uv
.
T
.
dot
(
energyLR
.
dot
(
vv
)),
rtol
=
1e-1
)
assert
np
.
isclose
(
uv
.
T
.
dot
(
energyFull
.
dot
(
vv
)),
-.
00
804628936
,
rtol
=
1e-6
)
Event Timeline
Log In to Comment