Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F106069075
HelmholtzAirfoil.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Mar 22, 01:27
Size
9 KB
Mime Type
text/x-python
Expires
Mon, Mar 24, 01:27 (2 d)
Engine
blob
Format
Raw Data
Handle
25107994
Attached To
R6746 RationalROMPy
HelmholtzAirfoil.py
View Options
from
copy
import
copy
import
fenics
as
fen
import
numpy
as
np
import
sympy
as
sp
from
rrompy.hfengines.fenics
import
ScatteringProblemEngine
as
SPE
from
rrompy.hsengines.fenics
import
HSEngine
as
HS
from
rrompy.reduction_methods.taylor
import
ApproximantTaylorPade
as
TP
from
rrompy.reduction_methods.taylor
import
ApproximantTaylorRB
as
TRB
from
rrompy.reduction_methods.lagrange
import
ApproximantLagrangePade
as
LP
from
rrompy.reduction_methods.lagrange
import
ApproximantLagrangeRB
as
LRB
from
rrompy.reduction_methods.base
import
ParameterSweeper
as
Sweeper
from
rrompy.sampling
import
QuadratureSampler
as
QS
from
matplotlib
import
pyplot
as
plt
from
operator
import
itemgetter
def
subdict
(
d
,
ks
):
return
dict
(
zip
(
ks
,
itemgetter
(
*
ks
)(
d
)))
####################
test
=
"solve"
test
=
"Taylor"
test
=
"Lagrange"
test
=
"TaylorSweep"
test
=
"LagrangeSweep"
ttype
=
"simple"
###ttype = "augmentedI"
###ttype = "augmentedM"
plotSamples
=
'ALL'
#plotSamples = []
k0
=
10
+
1.j
kLeft
,
kRight
=
8
+
1.j
,
12
+
1.j
ktar
=
11
ktars
=
np
.
linspace
(
8
,
12
,
33
)
-
.
5j
PI
=
np
.
pi
R
=
2
def
Dboundary
(
x
,
on_boundary
):
return
on_boundary
and
(
x
[
0
]
**
2
+
x
[
1
]
**
2
)
**.
5
<
.
95
*
R
kappa
=
10
theta
=
PI
*
-
45
/
180.
mu
=
1.1
epsilon
=
.
1
x
,
y
=
sp
.
symbols
(
'x[0] x[1]'
,
real
=
True
)
phiex
=
kappa
*
(
x
*
np
.
cos
(
theta
)
+
y
*
np
.
sin
(
theta
))
u0ex
=
-
sp
.
exp
(
1.j
*
phiex
)
checkReal
=
x
**
2
-
x
+
y
**
2
rhoroot
=
((
x
**
2
+
y
**
2
)
/
((
x
-
1
)
**
2
+
y
**
2
))
**.
25
phiroot1
=
sp
.
atan
(
-
y
/
(
x
**
2
-
x
+
y
**
2
))
/
2
phiroot2
=
sp
.
atan
(
-
y
/
(
x
**
2
-
x
+
y
**
2
))
/
2
-
PI
*
sp
.
sign
(
-
y
/
(
x
**
2
-
x
+
y
**
2
))
/
2
kappam1
=
(((
rhoroot
*
sp
.
cos
(
phiroot1
)
+.
5
)
**
2.
+
(
rhoroot
*
sp
.
sin
(
phiroot1
))
**
2.
)
/
((
rhoroot
*
sp
.
cos
(
phiroot1
)
-
1.
)
**
2.
+
(
rhoroot
*
sp
.
sin
(
phiroot1
))
**
2.
)
)
**.
5
-
mu
kappam2
=
(((
rhoroot
*
sp
.
cos
(
phiroot2
)
+.
5
)
**
2.
+
(
rhoroot
*
sp
.
sin
(
phiroot2
))
**
2.
)
/
((
rhoroot
*
sp
.
cos
(
phiroot2
)
-
1.
)
**
2.
+
(
rhoroot
*
sp
.
sin
(
phiroot2
))
**
2.
)
)
**.
5
-
mu
Heps1
=
.
9
*
.
5
*
(
1
+
kappam1
/
epsilon
+
sp
.
sin
(
PI
*
kappam1
/
epsilon
)
/
PI
)
+
.
1
Heps2
=
.
9
*
.
5
*
(
1
+
kappam2
/
epsilon
+
sp
.
sin
(
PI
*
kappam2
/
epsilon
)
/
PI
)
+
.
1
mesh
=
fen
.
Mesh
(
'../data/mesh/airfoil.xml'
)
a
=
fen
.
Expression
((
'{0}>=0 ? ({2}>=-{1} ? ({2}<={1} ? {4} : 1) : .1) : '
'({3}>=-{1} ? ({3}<={1} ? {5} : 1) : .1)'
)
\
.
format
(
sp
.
printing
.
ccode
(
checkReal
),
str
(
epsilon
),
sp
.
printing
.
ccode
(
kappam1
),
sp
.
printing
.
ccode
(
kappam2
),
sp
.
printing
.
ccode
(
Heps1
),
sp
.
printing
.
ccode
(
Heps2
)),
degree
=
3
)
DirichletTerm
=
[
sp
.
printing
.
ccode
(
sp
.
simplify
(
sp
.
re
(
u0ex
))),
sp
.
printing
.
ccode
(
sp
.
simplify
(
sp
.
im
(
u0ex
)))]
if
ttype
==
"simple"
:
solver
=
SPE
()
solver
.
omega
=
k0
solver
.
V
=
fen
.
FunctionSpace
(
mesh
,
"P"
,
3
)
solver
.
diffusivity
=
a
solver
.
DirichletBoundary
=
Dboundary
solver
.
RobinBoundary
=
'rest'
solver
.
DirichletDatum
=
[
fen
.
Expression
(
x
,
degree
=
3
)
\
for
x
in
DirichletTerm
]
plotter
=
HS
(
solver
.
V
)
else
:
print
(
'NOPE'
)
# if ttype[-1] == "I": constraintType = "IDENTITY"
# else: constraintType = "MASS"
# solver = HFSA(mesh = mesh, wavenumber = k0, diffusivity = a,
# forcingTerm = 0, FEDegree = 3, DirichletBoundary = Dboundary,
# RobinBoundary = 'rest', DirichletDatum = DirichletTerm,
# constraintType = constraintType)
# plotter = HSA(solver.V, d = 2)
baseRe
,
baseIm
=
solver
.
DirichletDatum
baseRe
=
fen
.
project
(
baseRe
,
solver
.
V
)
baseIm
=
fen
.
project
(
baseIm
,
solver
.
V
)
uinc
=
np
.
array
(
baseRe
.
vector
())
+
1.j
*
np
.
array
(
baseIm
.
vector
())
if
ttype
[:
-
1
]
==
"augmented"
:
print
(
'NOPE'
)
# uinc = [uinc, kappa * uinc]
if
test
==
"solve"
:
aF
=
fen
.
interpolate
(
a
,
solver
.
V
)
av
=
aF
.
vector
()
uh
=
solver
.
solve
(
k0
)
print
(
plotter
.
norm
(
uh
,
kappa
))
if
ttype
==
"simple"
:
uhtot
=
uh
-
uinc
else
:
uhtot
=
[
x
-
y
for
x
,
y
in
zip
(
uh
,
uinc
)]
print
(
plotter
.
norm
(
uhtot
,
kappa
))
plotter
.
plot
(
av
,
what
=
'Real'
,
name
=
'a'
)
plotter
.
plot
(
uhtot
-
uh
,
what
=
'Real'
,
name
=
'u_inc'
)
plotter
.
plot
(
uh
,
what
=
'ABS'
)
plotter
.
plot
(
uhtot
,
what
=
'ABS'
,
name
=
'u + u_inc'
)
elif
test
in
[
"Taylor"
,
"Lagrange"
]:
if
test
==
"Taylor"
:
params
=
{
'N'
:
8
,
'M'
:
7
,
'R'
:
8
,
'E'
:
8
,
'sampleType'
:
'Krylov'
,
'POD'
:
False
}
parPade
=
subdict
(
params
,
[
'N'
,
'M'
,
'E'
,
'sampleType'
,
'POD'
])
parRB
=
subdict
(
params
,
[
'R'
,
'E'
,
'sampleType'
,
'POD'
])
approxPade
=
TP
(
solver
,
plotter
,
mu0
=
k0
,
plotDer
=
plotSamples
,
approxParameters
=
parPade
)
approxRB
=
TRB
(
solver
,
plotter
,
mu0
=
k0
,
approxParameters
=
parRB
)
else
:
params
=
{
'N'
:
8
,
'M'
:
7
,
'R'
:
9
,
'S'
:
9
,
'POD'
:
True
,
'sampler'
:
QS
([
kLeft
,
kRight
],
"CHEBYSHEV"
)}
parPade
=
subdict
(
params
,
[
'N'
,
'M'
,
'S'
,
'POD'
,
'sampler'
])
parRB
=
subdict
(
params
,
[
'R'
,
'S'
,
'POD'
,
'sampler'
])
approxPade
=
LP
(
solver
,
plotter
,
mu0
=
np
.
mean
([
kLeft
,
kRight
]),
plotSnap
=
plotSamples
,
approxParameters
=
parPade
)
approxRB
=
LRB
(
solver
,
plotter
,
mu0
=
np
.
mean
([
kLeft
,
kRight
]),
approxParameters
=
parRB
)
PadeErr
,
solNorm
=
approxPade
.
approxError
(
ktar
),
approxPade
.
HFNorm
(
ktar
)
RBErr
=
approxRB
.
approxError
(
ktar
)
print
((
'SolNorm:
\t
{}
\n
ErrPade:
\t
{}
\n
ErrRelPade:
\t
{}
\n
ErrRB:
\t\t
{}'
'
\n
ErrRelRB:
\t
{}'
)
.
format
(
solNorm
,
PadeErr
,
np
.
divide
(
PadeErr
,
solNorm
),
RBErr
,
np
.
divide
(
RBErr
,
solNorm
)))
print
(
'
\n
Poles Pade'':'
)
print
(
approxPade
.
getPoles
())
print
(
'
\n
Poles RB:'
)
print
(
approxRB
.
getPoles
())
uHF
=
approxPade
.
getHF
(
ktar
)
plotter
.
plot
(
uHF
,
name
=
'u_ex'
)
approxPade
.
plotApp
(
ktar
,
name
=
'u_Pade'''
)
approxRB
.
plotApp
(
ktar
,
name
=
'u_RB'
)
approxPade
.
plotErr
(
ktar
,
name
=
'errPade'''
)
approxRB
.
plotErr
(
ktar
,
name
=
'errRB'
)
elif
test
in
[
"TaylorSweep"
,
"LagrangeSweep"
]:
if
test
==
"TaylorSweep"
:
shift
=
10
nsets
=
3
stride
=
3
Emax
=
stride
*
(
nsets
-
1
)
+
shift
+
1
params
=
{
'Emax'
:
Emax
,
'sampleType'
:
'Krylov'
,
'POD'
:
False
}
paramsSetsPade
=
[
None
]
*
nsets
paramsSetsRB
=
[
None
]
*
nsets
for
i
in
range
(
nsets
):
paramsSetsPade
[
i
]
=
{
'N'
:
stride
*
i
+
shift
+
1
,
'M'
:
stride
*
i
+
shift
,
'E'
:
stride
*
i
+
shift
+
1
}
paramsSetsRB
[
i
]
=
{
'E'
:
stride
*
i
+
shift
+
1
,
'R'
:
stride
*
i
+
shift
+
1
}
approxPade
=
TP
(
solver
,
plotter
,
mu0
=
kappa
,
approxParameters
=
params
)
approxRB
=
TRB
(
solver
,
plotter
,
mu0
=
kappa
,
approxParameters
=
params
)
else
:
shift
=
10
nsets
=
3
stride
=
3
Smax
=
stride
*
(
nsets
-
1
)
+
shift
+
2
paramsPade
=
{
'S'
:
Smax
,
'POD'
:
True
,
'sampler'
:
QS
([
kLeft
,
kRight
],
"CHEBYSHEV"
)}
paramsRB
=
copy
(
paramsPade
)
paramsSetsPade
=
[
None
]
*
nsets
paramsSetsRB
=
[
None
]
*
nsets
for
i
in
range
(
nsets
):
paramsSetsPade
[
i
]
=
{
'N'
:
stride
*
i
+
shift
+
1
,
'M'
:
stride
*
i
+
shift
,
'S'
:
stride
*
i
+
shift
+
2
}
paramsSetsRB
[
i
]
=
{
'R'
:
stride
*
i
+
shift
+
1
,
'S'
:
stride
*
i
+
shift
+
2
}
approxPade
=
LP
(
solver
,
plotter
,
mu0
=
np
.
mean
([
kLeft
,
kRight
]),
approxParameters
=
paramsPade
)
approxRB
=
LRB
(
solver
,
plotter
,
mu0
=
np
.
mean
([
kLeft
,
kRight
]),
approxParameters
=
paramsRB
)
sweeper
=
Sweeper
(
mutars
=
ktars
,
mostExpensive
=
'Approx'
)
sweeper
.
ROMEngine
=
approxPade
sweeper
.
params
=
paramsSetsPade
filenamePade
=
sweeper
.
sweep
(
'../data/output/HelmholtzAirfoil'
+
test
[:
-
5
]
+
'PadeFE.dat'
)
sweeper
.
ROMEngine
=
approxRB
sweeper
.
params
=
paramsSetsRB
filenameRB
=
sweeper
.
sweep
(
'../data/output/HelmholtzAirfoil'
+
test
[:
-
5
]
+
'RBFE.dat'
)
for
i
in
range
(
nsets
):
if
test
==
"TaylorSweep"
:
val
=
stride
*
i
+
shift
+
1
PadeOutput
=
sweeper
.
read
(
filenamePade
,
{
'N'
:
val
},
[
'muRe'
,
'HFNorm'
,
'AppNorm'
,
'ErrNorm'
])
RBOutput
=
sweeper
.
read
(
filenameRB
,
{
'E'
:
val
},
[
'muRe'
,
'AppNorm'
,
'ErrNorm'
])
let
=
'E'
else
:
val
=
stride
*
i
+
shift
+
2
PadeOutput
=
sweeper
.
read
(
filenamePade
,
{
'S'
:
val
},
[
'muRe'
,
'HFNorm'
,
'AppNorm'
,
'ErrNorm'
])
RBOutput
=
sweeper
.
read
(
filenameRB
,
{
'S'
:
val
},
[
'muRe'
,
'AppNorm'
,
'ErrNorm'
])
let
=
'S'
ktarsF
=
PadeOutput
[
'muRe'
]
solNormF
=
PadeOutput
[
'HFNorm'
]
PadektarsF
=
PadeOutput
[
'muRe'
]
PadeNormF
=
PadeOutput
[
'AppNorm'
]
PadeErrorF
=
PadeOutput
[
'ErrNorm'
]
RBktarsF
=
RBOutput
[
'muRe'
]
RBNormF
=
RBOutput
[
'AppNorm'
]
RBErrorF
=
RBOutput
[
'ErrNorm'
]
plt
.
figure
(
figsize
=
(
10
,
5
))
plt
.
plot
(
ktarsF
,
solNormF
,
'k-'
,
label
=
'Sol norm'
)
plt
.
plot
(
PadektarsF
,
PadeNormF
,
'b--'
,
label
=
'Pade'' norm, {1} = {0}'
.
format
(
val
,
let
))
plt
.
plot
(
RBktarsF
,
RBNormF
,
'g--'
,
label
=
'RB norm, {1} = {0}'
.
format
(
val
,
let
))
plt
.
legend
()
plt
.
grid
()
p
=
plt
.
legend
(
loc
=
'upper left'
)
plt
.
savefig
(
'./normA'
+
str
(
i
)
+
'.eps'
,
format
=
'eps'
,
dpi
=
1000
)
plt
.
show
()
plt
.
close
()
plt
.
figure
(
figsize
=
(
10
,
5
))
plt
.
semilogy
(
ktarsF
,
np
.
divide
(
PadeErrorF
,
solNormF
),
'b'
,
label
=
'Pade'' relative error, {1} = {0}'
.
format
(
val
,
let
))
plt
.
semilogy
(
RBktarsF
,
np
.
divide
(
RBErrorF
,
solNormF
),
'g'
,
label
=
'RB relative error, {1} = {0}'
.
format
(
val
,
let
))
plt
.
legend
()
plt
.
grid
()
p
=
plt
.
legend
(
loc
=
'lower right'
)
plt
.
savefig
(
'./errorAR'
+
str
(
i
)
+
'.eps'
,
format
=
'eps'
,
dpi
=
1000
)
plt
.
show
()
plt
.
close
()
Event Timeline
Log In to Comment