Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121834655
PolesCentered.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Jul 14, 07:00
Size
2 KB
Mime Type
text/x-python
Expires
Wed, Jul 16, 07:00 (2 d)
Engine
blob
Format
Raw Data
Handle
27398863
Attached To
R6746 RationalROMPy
PolesCentered.py
View Options
import
numpy
as
np
from
rrompy.hfengines.linear_problem
import
\
HelmholtzSquareBubbleProblemEngine
as
HSBPE
from
rrompy.reduction_methods.centered
import
RationalPade
as
Pade
from
rrompy.reduction_methods.centered
import
RBCentered
as
RB
from
rrompy.utilities.base
import
squareResonances
verb
=
0
k0
=
(
12
+
0.j
)
**
.
5
Nmin
,
Nmax
=
2
,
10
Nvals
=
np
.
arange
(
Nmin
,
Nmax
+
1
,
2
)
params
=
{
'N'
:
Nmin
,
'M'
:
0
,
'Emax'
:
Nmax
,
'POD'
:
True
,
'sampleType'
:
'Arnoldi'
}
#, 'robustTol':1e-14}
#boolCon = lambda x : np.abs(np.imag(x)) < 1e-1 * np.abs(np.real(x)
# - np.real(z0))
#cleanupParameters = {'boolCondition':boolCon, 'residueCheck':True}
solver
=
HSBPE
(
kappa
=
12
**
.
5
,
theta
=
np
.
pi
/
3
,
n
=
25
,
verbosity
=
verb
)
solver
.
omega
=
np
.
real
(
k0
)
approxP
=
Pade
(
solver
,
mu0
=
k0
,
approxParameters
=
params
,
verbosity
=
verb
)
#,
# equilibration = True, cleanupParameters = cleanupParameters)
approxR
=
RB
(
solver
,
mu0
=
k0
,
approxParameters
=
params
,
verbosity
=
verb
)
rP
,
rE
=
[
None
]
*
len
(
Nvals
),
[
None
]
*
len
(
Nvals
)
verbose
=
1
for
j
,
N
in
enumerate
(
Nvals
):
if
verbose
>
0
:
print
(
'N = E = {}'
.
format
(
N
))
approxP
.
approxParameters
=
{
'N'
:
N
,
'E'
:
N
}
approxR
.
approxParameters
=
{
'R'
:
N
,
'E'
:
N
}
if
verbose
>
1
:
print
(
approxP
.
approxParameters
)
print
(
approxR
.
approxParameters
)
rP
[
j
]
=
approxP
.
getPoles
()
rE
[
j
]
=
approxR
.
getPoles
()
if
verbose
>
2
:
print
(
rP
)
print
(
rE
)
from
matplotlib
import
pyplot
as
plt
plotRows
=
int
(
np
.
ceil
(
len
(
Nvals
)
/
3
))
fig
,
axes
=
plt
.
subplots
(
plotRows
,
3
,
figsize
=
(
15
,
3.5
*
plotRows
))
for
j
,
N
in
enumerate
(
Nvals
):
i1
,
i2
=
int
(
np
.
floor
(
j
/
3
)),
j
%
3
axes
[
i1
,
i2
]
.
set_title
(
'N = E = {}'
.
format
(
N
))
axes
[
i1
,
i2
]
.
plot
(
np
.
real
(
rP
[
j
]),
np
.
imag
(
rP
[
j
]),
'Xb'
,
label
=
"Pade'"
,
markersize
=
8
)
axes
[
i1
,
i2
]
.
plot
(
np
.
real
(
rE
[
j
]),
np
.
imag
(
rE
[
j
]),
'Pr'
,
label
=
"RB"
,
markersize
=
8
)
axes
[
i1
,
i2
]
.
axhline
(
linewidth
=
1
,
color
=
'k'
)
xmin
,
xmax
=
axes
[
i1
,
i2
]
.
get_xlim
()
height
=
(
xmax
-
xmin
)
/
2.
res
=
np
.
power
(
squareResonances
(
xmin
**
2.
,
xmax
**
2.
,
False
),
.
5
)
axes
[
i1
,
i2
]
.
plot
(
res
,
np
.
zeros_like
(
res
),
'ok'
,
markersize
=
4
)
axes
[
i1
,
i2
]
.
plot
(
np
.
real
(
k0
),
np
.
imag
(
k0
),
'om'
,
markersize
=
5
)
axes
[
i1
,
i2
]
.
plot
(
np
.
real
(
k0
)
*
np
.
ones
(
2
),
1.5
*
height
*
np
.
arange
(
-
1
,
3
,
2
),
'--m'
)
axes
[
i1
,
i2
]
.
grid
()
axes
[
i1
,
i2
]
.
set_xlim
(
xmin
,
xmax
)
axes
[
i1
,
i2
]
.
set_ylim
(
-
height
,
height
)
p
=
axes
[
i1
,
i2
]
.
legend
()
plt
.
tight_layout
()
for
j
in
range
((
len
(
Nvals
)
-
1
)
%
3
+
1
,
3
):
axes
[
plotRows
-
1
,
j
]
.
axis
(
'off'
)
Event Timeline
Log In to Comment