Page MenuHomec4science

square_simplified_pod.py
No OneTemporary

File Metadata

Created
Mon, Nov 4, 17:48

square_simplified_pod.py

import numpy as np
from rrompy.hfengines.linear_problem.bidimensional import \
HelmholtzSquareSimplifiedDomainProblemEngine as HSSDPE
from rrompy.reduction_methods.standard import RationalInterpolant as RI
from rrompy.reduction_methods.standard import ReducedBasis as RB
from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS,
QuadratureSamplerTotal as QST,
ManualSampler as MS,
RandomSampler as RS)
verb = 5
size = 1
show_sample = False
show_norm = True
MN = 5
R = (MN + 2) * (MN + 1) // 2
STensorized = (MN + 1) ** 2
samples = "centered"
samples = "standard"
algo = "rational"
#algo = "RB"
sampling = "quadrature"
sampling = "quadrature_total"
sampling = "random"
if size == 1: # small
mu0 = [4 ** .5, 1.5 ** .5]
mutar = [5 ** .5, 1.75 ** .5]
murange = [[2 ** .5, 1. ** .5], [6 ** .5, 2. ** .5]]
elif size == 2: # medium
mu0 = [4 ** .5, 1.75 ** .5]
mutar = [5 ** .5, 1.25 ** .5]
murange = [[1 ** .5, 1. ** .5], [7 ** .5, 2.5 ** .5]]
elif size == 3: # fat
mu0 = [6 ** .5, 4 ** .5]
mutar = [2 ** .5, 2.5 ** .5]
murange = [[0 ** .5, 2 ** .5], [12 ** .5, 6 ** .5]]
elif size == 4: # crowded
mu0 = [10 ** .5, 2 ** .5]
mutar = [9 ** .5, 2.25 ** .5]
murange = [[8 ** .5, 1.5 ** .5], [12 ** .5, 2.5 ** .5]]
elif size == 5: # tall
mu0 = [11 ** .5, 2.25 ** .5]
mutar = [10.5 ** .5, 2.5 ** .5]
murange = [[10 ** .5, 1.5 ** .5], [12 ** .5, 3 ** .5]]
elif size == 6: # taller
mu0 = [11 ** .5, 2.25 ** .5]
mutar = [10.5 ** .5, 2.5 ** .5]
murange = [[10 ** .5, 1.25 ** .5], [12 ** .5, 3.25 ** .5]]
elif size == 7: # low
mu0 = [7 ** .5, .75 ** .5]
mutar = [8 ** .5, 1 ** .5]
murange = [[6 ** .5, .25 ** .5], [8 ** .5, 1.25 ** .5]]
aEff = 1.25
bEff = 1. - aEff
murangeEff = [[(aEff*murange[0][0]**2. + bEff*murange[1][0]**2.) ** .5,
(aEff*murange[0][1]**2. + bEff*murange[1][1]**2.) ** .5],
[(aEff*murange[1][0]**2. + bEff*murange[0][0]**2.) ** .5,
(aEff*murange[1][1]**2. + bEff*murange[0][1]**2.) ** .5]]
solver = HSSDPE(kappa = 2.5, theta = np.pi / 3, mu0 = mu0, n = 20,
verbosity = verb)
rescalingExp = [2.] * 2
if algo == "rational":
params = {'N':MN, 'M':MN, 'S':R, 'POD':True}
if samples == "standard":
params['polybasis'] = "CHEBYSHEV"
params['polybasis'] = "LEGENDRE"
params['polybasis'] = "MONOMIAL"
elif samples == "centered":
params['polybasis'] = "MONOMIAL"
method = RI
else: #if algo == "RB":
params = {'R':R, 'S':R, 'POD':True}
method = RB
if samples == "standard":
if sampling == "quadrature":
params['sampler'] = QS(murange, "CHEBYSHEV", scalingExp = rescalingExp)
# params['sampler'] = QS(murange, "GAUSSLEGENDRE", scalingExp = rescalingExp)
# params['sampler'] = QS(murange, "UNIFORM", scalingExp = rescalingExp)
params['S'] = STensorized
elif sampling == "quadrature_total":
params['sampler'] = QST(murange, "CHEBYSHEV", scalingExp = rescalingExp)
else: # if sampling == "random":
params['sampler'] = RS(murange, "HALTON", scalingExp = rescalingExp)
elif samples == "centered":
params['sampler'] = MS(murange, points = [mu0], scalingExp = rescalingExp)
approx = method(solver, mu0 = mu0, approxParameters = params,
verbosity = verb)
approx.setupApprox()
if show_sample:
approx.plotApprox(mutar, name = 'u_app')
approx.plotHF(mutar, name = 'u_HF')
approx.plotErr(mutar, name = 'err')
approx.plotRes(mutar, name = 'res')
appErr, solNorm = approx.normErr(mutar), approx.normHF(mutar)
resNorm, RHSNorm = approx.normRes(mutar), approx.normRHS(mutar)
print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr,
np.divide(appErr, solNorm)))
print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm,
np.divide(resNorm, RHSNorm)))
if algo == "rational":
from plot_zero_set import plotZeroSet2
muZeroVals, Qvals = plotZeroSet2(murange, murangeEff, approx, mu0,
200, [2., 2.])
if show_norm:
from plot_inf_set import plotInfSet2
muInfVals, normEx, normApp, normRes, normErr, beta = plotInfSet2(
murange, murangeEff, approx, mu0, 25, [2., 2.])

Event Timeline