Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91241360
squareScatteringHomog.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 07:08
Size
2 KB
Mime Type
text/x-python
Expires
Mon, Nov 11, 07:08 (2 d)
Engine
blob
Format
Raw Data
Handle
22227879
Attached To
R6746 RationalROMPy
squareScatteringHomog.py
View Options
import
numpy
as
np
from
rrompy.hfengines.linear_problem
import
\
HelmholtzCavityScatteringProblemEngine
as
HCSPE
from
rrompy.reduction_methods.distributed_greedy
import
\
RationalInterpolantGreedy
as
Pade
from
rrompy.reduction_methods.distributed_greedy
import
\
RBDistributedGreedy
as
RB
from
rrompy.utilities.fenics
import
L2NormMatrix
verb
=
2
timed
=
False
algo
=
"Pade"
#algo = "RB"
polyBasis
=
"LEGENDRE"
polyBasis
=
"CHEBYSHEV"
#polyBasis = "MONOMIAL"
errorEstimatorKind
=
"BARE"
errorEstimatorKind
=
"BASIC"
#errorEstimatorKind = "EXACT"
k0s
=
np
.
linspace
(
10
,
15
,
100
)
k0
=
np
.
mean
(
k0s
)
kl
,
kr
=
min
(
k0s
),
max
(
k0s
)
params
=
{
'muBounds'
:[
kl
,
kr
],
'nTestPoints'
:
500
,
'Delta'
:
0
,
'greedyTol'
:
5e-3
,
'S'
:
2
,
'polybasis'
:
polyBasis
,
'errorEstimatorKind'
:
errorEstimatorKind
}
if
timed
:
verb
=
0
solver
=
HCSPE
(
kappa
=
5
,
n
=
20
,
verbosity
=
verb
)
solver
.
omega
=
np
.
real
(
k0
)
if
algo
==
"Pade"
:
approx
=
Pade
(
solver
,
mu0
=
k0
,
approxParameters
=
params
,
verbosity
=
verb
)
else
:
params
.
pop
(
'Delta'
)
params
.
pop
(
'polybasis'
)
params
.
pop
(
'errorEstimatorKind'
)
approx
=
RB
(
solver
,
mu0
=
k0
,
approxParameters
=
params
,
verbosity
=
verb
)
approx
.
initEstimatorNormEngine
(
L2NormMatrix
(
solver
.
V
))
if
timed
:
from
time
import
clock
start_time
=
clock
()
approx
.
greedy
()
print
(
"Time: "
,
clock
()
-
start_time
)
else
:
approx
.
greedy
(
True
)
approx
.
samplingEngine
.
verbosity
=
0
approx
.
trainedModel
.
verbosity
=
0
approx
.
verbosity
=
0
from
matplotlib
import
pyplot
as
plt
normApp
=
np
.
zeros
(
len
(
k0s
))
norm
=
np
.
zeros_like
(
normApp
)
res
=
np
.
zeros_like
(
normApp
)
err
=
np
.
zeros_like
(
normApp
)
for
j
in
range
(
len
(
k0s
)):
normApp
[
j
]
=
approx
.
normApprox
(
k0s
[
j
])
norm
[
j
]
=
approx
.
normHF
(
k0s
[
j
])
res
[
j
]
=
(
approx
.
estimatorNormEngine
.
norm
(
approx
.
getRes
(
k0s
[
j
]))
/
approx
.
estimatorNormEngine
.
norm
(
approx
.
getRHS
(
k0s
[
j
])))
err
[
j
]
=
approx
.
normErr
(
k0s
[
j
])
/
approx
.
normHF
(
k0s
[
j
])
resApp
=
approx
.
errorEstimator
(
k0s
)
plt
.
figure
()
plt
.
plot
(
k0s
,
norm
)
plt
.
plot
(
k0s
,
normApp
,
'--'
)
plt
.
plot
(
np
.
real
(
approx
.
mus
),
1.25
*
np
.
max
(
norm
)
*
np
.
ones_like
(
approx
.
mus
,
dtype
=
float
),
'rx'
)
plt
.
xlim
([
kl
,
kr
])
plt
.
grid
()
plt
.
show
()
plt
.
close
()
plt
.
figure
()
plt
.
semilogy
(
k0s
,
res
)
plt
.
semilogy
(
k0s
,
resApp
,
'--'
)
plt
.
semilogy
(
np
.
real
(
approx
.
mus
),
4.
*
np
.
max
(
resApp
)
*
np
.
ones_like
(
approx
.
mus
,
dtype
=
float
),
'rx'
)
plt
.
xlim
([
kl
,
kr
])
plt
.
grid
()
plt
.
show
()
plt
.
close
()
plt
.
figure
()
plt
.
semilogy
(
k0s
,
err
)
plt
.
xlim
([
kl
,
kr
])
plt
.
grid
()
plt
.
show
()
plt
.
close
()
polesApp
=
approx
.
getPoles
()
mask
=
(
np
.
real
(
polesApp
)
<
kl
)
|
(
np
.
real
(
polesApp
)
>
kr
)
print
(
"Outliers:"
,
polesApp
[
mask
])
polesApp
=
polesApp
[
~
mask
]
plt
.
figure
()
plt
.
plot
(
np
.
real
(
polesApp
),
np
.
imag
(
polesApp
),
'kx'
)
plt
.
axis
(
'equal'
)
plt
.
grid
()
plt
.
show
()
plt
.
close
()
Event Timeline
Log In to Comment