Page MenuHomec4science

PadeTaylor.py
No OneTemporary

File Metadata

Created
Sat, May 4, 11:10

PadeTaylor.py

import numpy as np
from rrompy.hfengines.scipy import HelmholtzSquareBubbleProblemEngine as HSBPE
from rrompy.hfengines.scipy import (
HelmholtzSquareTransmissionProblemEngine as HSTPE)
from rrompy.hfengines.scipy import HelmholtzBoxScatteringProblemEngine as HBSPE
from rrompy.reduction_methods.taylor import ApproximantTaylorPade as Pade
testNo = 1
verb = 5
homog = True
#homog = False
if testNo == 1:
params = {'N':4, 'M':3, 'E':4, 'sampleType':'Arnoldi', 'POD':True}
k0 = 12 ** .5
ktar = 10.5 ** .5
solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40,
verbosity = verb)
solver.omega = np.real(k0)
approx = Pade(solver, mu0 = k0, approxParameters = params,
verbosity = verb)
approx.setupApprox()
# approx.plotSamples()
approx.plotApp(ktar, name = 'u_Pade''')
approx.plotHF(ktar, name = 'u_HF')
approx.plotErr(ktar, name = 'err')
approx.plotRes(ktar, name = 'res')
appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar)
resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar)
print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr,
np.divide(appErr, solNorm)))
print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm,
np.divide(resNorm, RHSNorm)))
print('\nPoles Pade'':')
print(approx.getPoles())
############
elif testNo == 2:
params = {'N':6, 'M':7, 'E':7, 'sampleType':'Arnoldi', 'POD':True}
k0 = 16 ** .5
ktar = 15 ** .5
solver = HSTPE(nT = 2, nB = 1, theta = np.pi * 45/180, kappa = 4., n = 50,
verbosity = verb)
solver.omega = np.real(k0)
approx = Pade(solver, mu0 = k0, approxParameters = params,
verbosity = verb, homogeneized = homog)
approx.setupApprox()
# approx.plotSamples()
approx.plotApp(ktar, name = 'u_Pade''')
approx.plotHF(ktar, name = 'u_HF')
approx.plotErr(ktar, name = 'err')
approx.plotRes(ktar, name = 'res')
appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar)
resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar)
print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr,
np.divide(appErr, solNorm)))
print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm,
np.divide(resNorm, RHSNorm)))
print('\nPoles Pade'':')
print(approx.getPoles())
############
elif testNo in [3, 4]:
if testNo == 3:
params = {'N':7, 'M':8, 'E':8, 'sampleType':'Krylov', 'POD':True}
else:
params = {'N':7, 'M':8, 'E':8, 'sampleType':'Arnoldi', 'POD':True}
k0 = 3
ktar = 4.+0.j
solver = HBSPE(R = 5, kappa = 3, theta = - np.pi * 75 / 180, n = 30,
verbosity = verb)
solver.omega = np.real(k0)
approx = Pade(solver, mu0 = k0, approxParameters = params,
verbosity = verb, homogeneized = homog)
approx.setupApprox()
approx.plotSamples()
approx.plotApp(ktar, name = 'u_Pade''')
approx.plotHF(ktar, name = 'u_HF')
approx.plotErr(ktar, name = 'err')
approx.plotRes(ktar, name = 'res')
appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar)
resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar)
print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr,
np.divide(appErr, solNorm)))
print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm,
np.divide(resNorm, RHSNorm)))
print('\nPoles Pade'':')
print(approx.getPoles())

Event Timeline