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Introduction

This document provides an explanation for the numerical methods provided by the class Rational

Interpolant1 and daughters, e.g. Rational Interpolant Greedy2, as well as most of the pivoted
approximants3.
Most of the focus will be dedicated to the impact of the (rationalMode,functionalSolve) parameters,
whose allowed values are

• (MINIMAL,NORM) (default): see Section 2.1.1; allows for repeated sample points.

• (MINIMAL,DOMINANT): see Section 2.1.2; allows for repeated sample points.

• (MINIMAL,BARYCENTRIC NORM): see Section 2.2.1; does not allow for a Least Squares approach;
undefined for more than one parameter.

• (MINIMAL,BARYCENTRIC AVERAGE): see Section 2.2.2; does not allow for a Least Squares approach;
undefined for more than one parameter.

• (STANDARD,NORM): see Section 3.1.2; allows for repeated sample points.

• (STANDARD,DOMINANT): see Section 3.1.2; allows for repeated sample points.

• (STANDARD,BARYCENTRIC NORM): see Section 3.2.1; undefined for more than one parameter.

• (STANDARD,BARYCENTRIC AVERAGE): see Section 3.2.2; undefined for more than one parameter.

We restrict the discussion to the single-parameter case. The main reference throughout the present
document is [1].

1 Aim of approximation

We seek an approximation of u : C→ V , with (V, 〈·, ·〉V ) a complex4 Hilbert space (with induced norm
‖·‖V ), of the form p̂/q̂, where p̂ : C → V and q̂ : C → C. The target u might be high-dimensional (for
instance, the solution of a PDE after Finite Element discretization) or low(er)-dimensional (for instance,
a functional of the above-mentioned PDE solution). For a given denominator q̂, the numerator p̂ is found
by interpolation of q̂u. Hence, here we focus on the computation of the denominator q̂.
Other than the choice of target function u, the parameters which affect the computation of q̂ are:

• mus ⊂ C ({µj}Sj=1 below); for (*,BARYCENTRIC *), the S points must be distinct.

• N ∈ N (N below); for (MINIMAL,BARYCENTRIC *), N must equal S − 1.

• polybasis ∈ {"CHEBYSHEV", "LEGENDRE", "MONOMIAL"}; only for (*,NORM) and (*,DOMINANT).

To simplify the notation, we set E = S − 1. For simplicity, we will consider only the case of S dis-
tinct sample points. One can deal with the case of confluent sample points by extending the standard
(Lagrange) interpolation steps to Hermite-Lagrange ones.

1./rrompy/reduction_methods/standard/rational_interpolant.py
2./rrompy/reduction_methods/standard/greedy/rational_interpolant_greedy.py
3./rrompy/reduction_methods/pivoted/{,greedy/}rational_interpolant_*.py
4The inner product is linear (resp. conjugate linear) in the first (resp. second) argument: 〈αv, βw〉V = αβ 〈v, w〉V .
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In the following, we will make use of the polynomial interpolation operator IM : (C×W )S → PM (C;W ),
where M is an integer (either N or E), and W a Banach space (either C or V ). We define its action on

samples ((µj , ψj))
S
j=1 ∈ (C×W )S as

IM
((

(µj , ψj)
)S
j=1

)
= arg min

p∈PM (C;W )

S∑
j=1

‖p(µj)− ψj‖2W ,

where

PM (C;W ) =

{
µ 7→

M∑
i=0

αiµ
i : α0, . . . , αM ∈W

}
.

In RROMPy, we compute interpolants by employing normal equations: given a basis {φi}Mi=0 of PM (C;C),
we expand

p(µ) =

M∑
i=0

ciφi(µ)

and observe that, for optimality, the coefficients {ci}Mi=0 ⊂W must satisfy

S∑
j=1

M∑
l=0

φi(µj)φl(µj)cl =

S∑
j=1

φi(µj)ψj ∀i = 0, . . . ,M,

i.e., in matrix form5,

[ci]
M
i=0︸ ︷︷ ︸

∈WM+1

=

([
φi(µj)

]M,S

i=0,j=1︸ ︷︷ ︸
=:ΦH∈C(M+1)×S

[
φi(µj)

]S,M
j=1,i=0︸ ︷︷ ︸

=:Φ∈CS×(M+1)

)−1 [
φi(µj)

]M,S

i=0,j=1︸ ︷︷ ︸
=:ΦH∈C(M+1)×S

[ψj ]
S
j=1︸ ︷︷ ︸

∈WS

. (1)

In practice, the polynomial basis {φi}Mi=0 is determined by the value of polybasis:

• If polybasis = "CHEBYSHEV", then φk(µ) = µk for k ∈ {0, 1} and φk(µ) = 2µφk−1(µ) − φk−2(µ)
for k ≥ 2.

• If polybasis = "LEGENDRE", then φk(µ) = µk for k ∈ {0, 1} and φk(µ) = (2 − 1/k)µφk−1(µ) −
(1− 1/k)φk−2(µ) for k ≥ 2.

• If polybasis = "MONOMIAL", then φk(µ) = µk for k ≥ 0.

Moreover, it will prove useful to define the “snapshot rank” r = r({u(µj)}Sj=1) = dim span{u(µj)}Sj=1.
This quantity is bounded from above by S and by the dimension of V (e.g., r = 1 if V = C).

2 MINIMAL Rational Interpolation (MRI)

The main motivation behind the MRI method involves the modified approximation problem

u ≈ IE
(((

µj , q̂(µj)u(µj)
))S

j=1

)/
q̂, (2)

where q̂ : C→ C is a polynomial of degree ≤ N ≤ E.
The denominator q̂ is found as

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥ dE

dµE
IE
(((

µj , q(µj)u(µj)
))S

j=1

)∥∥∥∥∥
V

(3)

where (?) is a normalization condition (which changes depending on functionalSolve) to exclude the
trivial minimizer q̂ ≡ 0. The methods described differ in terms of the constraint (?), as well as of the
degrees of freedom which are chosen to represent the denominator q.
For (3) to be well-defined (unique optimizer up to unit scaling), in addition to the condition N ≤ S − 1,
we must have (by balance of degrees of freedom vs. constraints) N ≤ r

5The superscript H denotes conjugate transposition, i.e. AH = A
>

.
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2.1 Polynomial coefficients as degrees of freedom

If the polynomial basis {φi}Ei=0 in (1) is hierarchical (as the three ones above), then the E-th derivative
of IE is proportional to the coefficient cE , and we have

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥∥[0, . . . , 0︸ ︷︷ ︸
E

, 1]
(
ΦHΦ

)−1
ΦH [q(µj)u(µj)]

S
j=1

∥∥∥∥∥∥
V

. (4)

Using the Kronecker delta (δij = 1 if i = j and δij = 0 if i 6= j), the last term [q(µj)u(µj)]
S
j=1 ∈ V S can

be factored into [
u(µj)δjj′

]S,S
j=1,j′=1

[q(µj)]
S
j=1 =

[
u(µj)δjj′

]S,S
j=1,j′=1

Φ̃q, (5)

where Φ̃ is the S × (N + 1) matrix obtained by extracting the first N + 1 columns of Φ. We remark

that we have expanded the polynomial q using the basis6 {φi}Ni=0: q(µ) =
∑N

i=0 qiφi(µ), with coefficients
q = [qi]

N
i=0 ∈ CN+1.

Combining (4) and (5), it is useful to consider the (N + 1) × (N + 1) Hermitian matrix with entries
(0 ≤ i, i′ ≤ N)

Gii′ =

S∑
j,j′=1

(
Φ
(
ΦHΦ

)−1
)
j,E+1

((
ΦHΦ

)−1
ΦH
)
E+1,j′

ΦjiΦj′i′ 〈u(µj′), u(µj)〉V . (6)

If (?) is quadratic (resp. linear) in q, then we can cast the computation of the denominator as a
quadratically (resp. linearly) constrained quadratic program involving G.

2.1.1 Quadratic constraint

We constrain q̂ to have unit (Euclidean) norm. The resulting optimization problem can be cast as a
minimal (normalized) eigenvector problem for G in (6). More explicitly,

q̂ = arg min
q∈CN+1

‖q‖2=1

qHGq.

2.1.2 Linear constraint

We constrain q̂N = 1, thus forcing q to be monic, with degree exactly N . Given G in (6), the resulting
optimization problem can be solved rather easily as:

q̂ =
G−1eN+1

e>N+1G
−1eN+1

, with eN+1 = [0, . . . , 0, 1]> ∈ CN+1.

2.2 Barycentric coefficients as degrees of freedom

Here we assume that the sample points are distinct, and that N = E = S − 1, so that, in particular,
Φ = Φ̃. Considering the constraint N ≤ r, we can deduce that the approach presented in this section
can only be applied if the rank of the snapshots is either full or defective by 1.
We can choose for convenience a non-hierarchical basis, dependent on the sample points, for q and IE ,
taking inspiration from barycentric interpolation:

φi(µ) =

S∏
j=1

j 6=i+1

(µ− µj). (7)

Since all elements of the basis are monic and of degree exactly N , the minimization problem can be cast
as

q̂ = arg min
q∈CN+1

(?)

∥∥∥∥∥∥[1, . . . , 1︸ ︷︷ ︸
S

]
(
ΦHΦ

)−1
ΦH
[
u(µj)δjj′

]S,S
j=1,j′=1

Φq

∥∥∥∥∥∥
V

. (8)

6In theory, nothing prevents us from using different bases for IE and q, cf. Section 2.3.
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At the same time, it is easy to see from (7) that the Vandermonde-like matrix Φ is diagonal, so that(
ΦHΦ

)−1
ΦH
[
u(µj)δjj′

]S,S
j=1,j′=1

Φ =
(
ΦHΦ

)−1
ΦHΦ

[
u(µj)δjj′

]S,S
j=1,j′=1

=
[
u(µj)δjj′

]S,S
j=1,j′=1

,

and

q̂ = arg min
q∈CN+1

(?)

∥∥∥∥∥
E∑
i=0

u(µi+1)qi

∥∥∥∥∥
V

. (9)

Considering (9), it is useful to define the S × S Hermitian “snapshot Gramian” matrix with entries
(0 ≤ i, i′ ≤ N)

Gii′ = 〈u(µi′+1), u(µi+1)〉V . (10)

So, once again, if (?) is quadratic (resp. linear) in q, then we can cast the computation of the denominator
as a quadratically (resp. linearly) constrained quadratic program involving G.
Before specifying the kind of normalization enforced, it is important to make a remark on numerical
stability. The basis in (7) is actually just a (i-dependent) factor away from being the Lagrangian one
(for which φi(µj) would equal δ(i+1)j instead of

δ(i+1)j

∏
k 6=i+1

(µj − µk),

as it does in our case). As such, it is generally a bad idea to numerically evaluate q starting from its
expansion coefficients with respect to {φi}Ni=0. We get around this by exploiting the following trick,

whose foundation is in [2, Section 2.3.3]: the roots of q̂ =
∑N

i=0 q̂iφi are the N finite eigenvalues λ of the
generalized (N + 2)× (N + 2) eigenproblem

Det




0 q̂0 · · · q̂N
1 µ1

...
. . .

1 µS

−


0
1

. . .

1

λ
 = 0. (11)

This computation is numerically more stable than most other manipulations of a polynomial in the basis
(7). Once the roots of q̂ have been computed, one can either convert it to nodal form

q̂(µ) ∝
N∏
i=1

(µ− λ̂i), (12)

or forgo using q̂ completely, in favor of a Heaviside-like approximation involving the newly computed
roots {λ̂i}Ni=1 as poles:

p̂(µ)

q̂(µ)
 b̂0 +

N∑
i=1

b̂i

µ− λ̂i
.

See the final paragraph in Section 2.3 for a slightly more detailed motivation of why the Heaviside form
of the approximant might be more useful than the standard rational one p̂/q̂ in practice.

2.2.1 Quadratic constraint

We constrain q̂ to have unit (Euclidean) norm. The resulting optimization problem can be cast as a
minimal (normalized) eigenvector problem for G in (10). More explicitly,

q̂ = arg min
q∈CN+1

‖q‖2=1

qHGq.

2.2.2 Linear constraint

We constrain
∑N

i=0 q̂i = 1, so that the polynomial q̂ is monic. Given G in (10), the resulting optimization
problem can be solved rather easily as:

q̂ =
G−11S

1>SG
−11S

, with 1S = [1, . . . , 1]> ∈ CS .
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2.3 Minor observations for MRI

• If N = E, normal equations are not necessary to compute IE , since Φ is square and can be
inverted directly. However, in practical applications, it may be useful to decrease the degree E
of the interpolant (which, in our presentation, we kept fixed to S − 1 for simplicity) to overcome
numerical instabilities which may arise in the (pseudo-)inversion of Φ. If this happens, Φ becomes
non-square, and normal equations are the only option.

• For BARYCENTRYC *, a specific choice of polynomial basis for IE was used to diagonalize the func-
tional. Under the assumptions that the sample points are distinct (and that E + 1 = S), one
can employ the quasi-Lagrangian basis (7) to expand IE in the other approaches as well, thus
simplifying significantly the structure of (3):

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥∥∥∥
S∑

j=1

q(µj)u(µj)

S∏
j′=1
j′ 6=j

1

µj − µj′

∥∥∥∥∥∥∥∥
V

.

This is independent of the basis used to expand q and, numerically, has repercussions only on the

computation of the term
(
ΦHΦ

)−1
ΦH in (6).

• In general, NORM and BARYCENTRIC NORM can be expected to be more numerically stable than
DOMINANT and BARYCENTRIC AVERAGE, respectively. This is due to the fact that the normalization
is enforced in a more numerically robust fashion.

• If the snapshots are orthonormalized via POD7, a simple unitary transformation allows to replace
V with Cr. As a consequence, all the V -inner products (resp. norms) can be recast as Euclidean
inner products (resp. norms) involving the R factor of the generalized (V -orthonormal) QR de-
composition of the snapshots.

• If a univariate rational surrogate is built in the scope of multivariate pole-matching-based pivoted
approximation8, the rational approximant is converted into a Heaviside/nodal representation when
different surrogates are combined. As such, the BARYCENTRIC * approach may be preferable to
avoid extra computations, as well as additional round-off artifacts.

3 STANDARD Rational Interpolation (SRI)

3.1 SRI based on polynomial interpolation

The main motivation behind the polynomial SRI method involves the modified approximation problem

u ≈ IM
(((

µj , q̂(µj)u(µj)
))S

j=1

)/
q̂,

where q̂ : C→ C is a polynomial of degree ≤ N ≤ E, and M ∈ N is such that 0 ≤M ≤ S − 2.
The denominator q̂ is found as

q̂ = arg min
q∈PN (C;C)

(?)

S∑
`=1

∥∥∥∥q(µ`)u(µ`)− IM
(((

µj , q(µj)u(µj)
))S

j=1

)
(µ`)

∥∥∥∥2

V

(13)

where (?) is a normalization condition (which changes depending on functionalSolve) to exclude the
trivial minimizer q̂ ≡ 0.
For (13) to be well-defined (unique optimizer up to unit scaling), in addition to the conditions N ≤ S−1
and M ≤ S − 2, we must have (by balance of degrees of freedom vs. constraints) M +N/r + 1 ≤ S.
As before, we can expand the target functional by linear algebra

q̂ = arg min
q∈CN+1

(?)

S∑
`=1

∥∥∥∥e>` [u(µj)δjj′
]S,S
j=1,j′=1

Φ̃q− e>` Φ
(
ΦHΦ

)−1
ΦH
[
u(µj)δjj′

]S,S
j=1,j′=1

Φ̃q

∥∥∥∥2

V

, (14)

7./rrompy/sampling/engines/sampling_engine_pod.py
8./rrompy/reduction_methods/pivoted/*
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with Φ ∈ CS×(M+1), Φ̃ ∈ CS×(N+1), and

e` = [0, . . . , 0︸ ︷︷ ︸
`−1

, 1, 0, . . . , 0︸ ︷︷ ︸
S−`

]> ∈ CS .

We observe that I − Φ
(
ΦHΦ

)−1
ΦH (with I the S × S identity matrix) corresponds to the (orthogonal)

projection onto the orthogonal complement of the range of Φ, so that we may express it as ΨΨH , with
the S −M − 1 columns of Ψ being an orthonormal basis for the orthogonal complement of the range of
Φ (which can be found by completion of the QR decomposition of Φ). Hence, we have

q̂ = arg min
q∈CN+1

(?)

S∑
`=1

∥∥∥∥e>` ΨΨH
[
u(µj)δjj′

]S,S
j=1,j′=1

Φ̃q

∥∥∥∥2

V

. (15)

As above, we can interpret (15) as the minimization of a quadratic form represented by a (N+1)×(N+1)
Hermitian matrix with entries (0 ≤ i, i′ ≤ N)

Gii′ =

S∑
j,j′=1

〈u(µj′), u(µj)〉V
(
ΨΨH

)
jj′

ΦjiΦj′i′ . (16)

The matrix G above can also be expressed as Φ̃H
(
G̊ •

(
ΨΨH

) )
Φ̃, with G̊ the snapshot Gramian (10)

and • the Hadamard product. If a Cholesky decomposition G̊ = R̊HR̊ is available, then G = (R̊H �
ΦH)H(R̊H � ΦH), with � the Khatri-Rao product.
If (?) is quadratic (resp. linear) in q, then we can cast the computation of the denominator as a
quadratically (resp. linearly) constrained quadratic program involving G.

3.1.1 Quadratic constraint

We constrain q̂ to have unit (Euclidean) norm. The resulting optimization problem can be cast as a
minimal (normalized) eigenvector problem for G in (16). More explicitly,

q̂ = arg min
q∈CN+1

‖q‖2=1

qHGq.

3.1.2 Linear constraint

We constrain q̂N = 1, thus forcing q to be monic, with degree exactly N . Given G in (16), the resulting
optimization problem can be solved rather easily as:

q̂ =
G−1eN+1

e>N+1G
−1eN+1

, with eN+1 = [0, . . . , 0, 1]> ∈ CN+1.

3.2 SRI based on barycentric interpolation

The main motivation behind the barycentric SRI method involves the modified approximation problem

u ≈ ĨN−1

(((
µj , q̂(µj)u(µj)

))S
j=1

)/
q̂,

where q̂ : C→ C is a polynomial of degree ≤ N ≤ E and the modified interpolator ĨN−1 is the same as
IN−1, but only considers the N samples at µ1, . . . , µN (we assume that the sample points are distinct
and their order is fixed).
The denominator q̂ is found as

q̂ = arg min
q∈PN (C;C)

(?)

S∑
`=N+1

w`

∥∥∥∥q(µ`)u(µ`)− ĨN−1

(((
µj , q(µj)u(µj)

))N
j=1

)
(µ`)

∥∥∥∥2

V

(17)

where (?) is a normalization condition (which changes depending on functionalSolve) to exclude the
trivial minimizer q̂ ≡ 0, and wN+1, . . . , wS are positive weights that will be specified.
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For (13) to be well-defined (unique optimizer up to unit scaling), in addition to the condition N ≤ S−1,
we must have (by balance of degrees of freedom vs. constraints) (1 + 1/r)N ≤ S.

We can choose a non-hierarchical basis, dependent on the sample points, for q and ĨN−1, taking inspi-
ration from barycentric interpolation: for ĨN−1, we take the basis

φi(µ) =

N∏
j=1

j 6=i+1

(µ− µj) =

∏N
j=1(µ− µj)

µ− µi+1
for i = 0, . . . , N − 1, (18)

whereas, for q, we use the basis φ0, . . . , φN−1, augmented with

φN (µ) =

N∏
j=1

(µ− µj). (19)

Given

q(µ) =

N−1∑
i=0

qjφi(µ) + qNφN (µ), (20)

it is easy to see that

ĨN−1

(((
µj , q(µj)u(µj)

))N
j=1

)
=

N−1∑
i=0

qiu(µi+1)φi, (21)

independently of qN . This allows to express (17) as

q̂ = arg min
q∈CN+1

(?)

S∑
`=N+1

w` |φN (µ`)|2
∥∥∥∥u(µ`)

(
eH`−NΦ[qi]

N−1
i=0 + qN

)
− eH`−NΦ

[
u(µj)δjj′

]N,N

j=1,j′=1
[qi]

N−1
i=0

∥∥∥∥2

V

,

(22)
where Φij = 1/(µN+i − µj), for i = 1, . . . , S −N and j = 1, . . . , N , and

e`−N = [0, . . . , 0︸ ︷︷ ︸
`−N−1

, 1, 0, . . . , 0︸ ︷︷ ︸
S−`

]> ∈ CS−N .

Following usual barycentric interpolation customs [2], we set w` = |φN (µ`)|−2
for ` = N + 1, . . . , S.

As above, we can interpret (22) as the minimization of a quadratic form represented by a (N+1)×(N+1)
Hermitian matrix with entries

Gii′ =


∑S

`=N+1 〈u(µ`)− u(µi′+1), u(µ`)− u(µi+1)〉V Φ`−N,i+1Φ`−N,i′+1, 0 ≤ i, i′ ≤ N − 1,∑S
`=N+1 〈u(µ`), u(µ`)− u(µi+1)〉V Φ`−N,i+1, 0 ≤ i ≤ N − 1, i′ = N,∑S
`=N+1 〈u(µ`)− u(µi′+1), u(µ`)〉V Φ`−N,i′+1, i = N, 0 ≤ i′ ≤ N − 1,∑S
`=N+1 ‖u(µ`)‖2V , i = i′ = N.

(23)
So, once again, if (?) is quadratic (resp. linear) in q, then we can cast the computation of the denominator
as a quadratically (resp. linearly) constrained quadratic program involving G.
The observation on stability presented in Section 2.2 apply also here. The only difference is that the
generalized eigenproblem (11) must be adjusted to account for the bias:

Det



q̂N q̂0 · · · q̂N−1

1 µ1

...
. . .

1 µN

−


0
1

. . .

1

λ
 = 0. (24)

3.2.1 Quadratic constraint

We constrain q̂ to have unit (Euclidean) norm. The resulting optimization problem can be cast as a
minimal (normalized) eigenvector problem for G in (23). More explicitly,

q̂ = arg min
q∈CN+1

‖q‖2=1

qHGq.
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3.2.2 Linear constraint

We constrain q̂N = 1, so that the polynomial q̂ is monic. Given G in (23), the resulting optimization
problem can be solved rather easily as:

q̂ =
G−1eN+1

e>N+1G
−1eN+1

, with eN+1 = [0, . . . , 0, 1]> ∈ CN+1.
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