
The RROMPy rational interpolation method

D. Pradovera, CSQI, EPF Lausanne – davide.pradovera@epfl.ch

Introduction

This document provides an explanation for the numerical method provided by the class Rational

Interpolant1 and daughters, e.g. Rational Interpolant Greedy2, as well as most of the pivoted
approximants3.
We restrict the discussion to the single-parameter case, and most of the focus will be dedicated to the
impact of the functionalSolve parameter, whose allowed values are

• NORM (default): see 2.1; allows for derivative information, i.e. repeated sample points.

• DOMINANT: see 2.2; allows for derivative information, i.e. repeated sample points.

• BARYCENTRIC NORM: see 3.1; does not allow for a Least Squares (LS) approach.

• BARYCENTRIC AVERAGE: see 3.2; does not allow for a Least Squares (LS) approach.

• NODAL: see 4; iterative method.

The main reference throughout the present document is [1].

1 Aim of approximation

We seek an approximation of u : C→ V , with (V, 〈·, ·〉V ) a complex4 Hilbert space (with endowed norm
‖·‖V ), of the form p̂/q̂, where p̂ : C→ V and q̂ : C→ C. For a given denominator q̂, the numerator p̂ is
found by interpolation (possibly, LS or based on radial basis functions) of q̂u. Hence, here we focus on
the computation of the denominator q̂.
Other than the choice of target function u, the parameters which affect the computation of q̂ are:

• mus ⊂ C ({µj}Sj=1 below); for all functionalSolve values but NORM and DOMINANT, the S points
must be distinct.

• N ∈ N (N below); for BARYCENTRIC, N must equal S − 1.

• polybasis0 ∈ {"CHEBYSHEV", "LEGENDRE", "MONOMIAL"}; only for NORM and DOMINANT.

For simplicity, we will consider only the case of S distinct sample points. One can deal with the case of
confluent sample points by extending the standard (Lagrange) interpolation steps to Hermite-Lagrange
ones.
The main motivation behind the method involves the modified approximation problem

u ≈ IN
(((

µj , q̂(µj)u(µj)
))S
j=1

)/
q̂,

where q̂ : C → C is a polynomial of degree ≤ N , and IN : (C × V )S → PN (C;V ) is a (LS) polynomial
interpolation operator, which maps S samples of a function (which lie in V ) to a polynomial of degree
N < S with coefficients in V .
More precisely, let

PN (C;W ) =

{
µ 7→

N∑
i=0

αiz
i : α0, . . . , αN ∈W

}
,

1./rrompy/reduction_methods/standard/rational_interpolant.py
2./rrompy/reduction_methods/standard/greedy/rational_interpolant_greedy.py
3./rrompy/reduction_methods/pivoted/{,greedy/}rational_interpolant_*.py
4The inner product is linear (resp. conjugate linear) in the first (resp. second) argument: 〈αv, βw〉V = αβ 〈v, w〉V .

1



with W either C or V . We set

IN
((

(µj , ψj)
)S
j=1

) ∣∣∣∣
µ

= arg min
p∈PN (C;V )

S∑
j=1

‖p(µj)− ψj‖2V .

In RROMPy, we compute (LS-)interpolants by employing normal equations: given a basis {φi}Ni=0 of
PN (C;C), we expand

IN
((

(µj , ψj)
)S
j=1

)
=

N∑
i=0

ciφi

and observe that, for optimality, the coefficients {ci}Ni=0 ⊂ V must satisfy

S∑
j=1

N∑
l=0

φi(µj)φl(µj)cl =

S∑
j=1

φi(µj)ψj ∀i = 0, . . . , N,

i.e., in matrix form5,

[ci]
N
i=0︸ ︷︷ ︸

∈V N+1

=

([
φi(µj)

]N,S
i=0,j=1︸ ︷︷ ︸

=:ΦH∈C(N+1)×S

[
φi(µj)

]S,N
j=1,i=0︸ ︷︷ ︸

=:Φ∈CS×(N+1)

)−1 [
φi(µj)

]N,S
i=0,j=1︸ ︷︷ ︸

=:ΦH∈C(N+1)×S

[ψj ]
S
j=1︸ ︷︷ ︸

∈V S

.

In practice the polynomial basis {φi}Ni=0 is determined by the value of polybasis0:

• If polybasis0 = "CHEBYSHEV", then φk(µ) = µk for k ∈ {0, 1} and φk(µ) = 2µφk−1(µ)− φk−2(µ)
for k ≥ 2.

• If polybasis0 = "LEGENDRE", then φk(µ) = µk for k ∈ {0, 1} and φk(µ) = (2 − 1/k)µφk−1(µ) −
(1− 1/k)φk−2(µ) for k ≥ 2.

• If polybasis0 = "MONOMIAL", then φk(µ) = µk for k ≥ 0.

The actual denominator q̂ is found as

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥ dN

dµN
IN
(((

µj , q(µj)u(µj)
))S
j=1

)∥∥∥∥∥
V

(1)

where (?) is a normalization condition (which changes depending on functionalSolve) to exclude the
trivial minimizer q̂ = 0.
Broadly speaking, the five methods described differ in terms of the constraint (?), as well as of the
degrees of freedom which are chosen to represent the denominator q.

2 Polynomial coefficients as degrees of freedom

If the polynomial basis {φi}Ni=0 is hierarchical (as the three ones above), then the N -th derivative of IN
coincides with the coefficient cN , and we have

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥∥[0, . . . , 0︸ ︷︷ ︸
N

, 1]
(
ΦHΦ

)−1
ΦH [q(µj)u(µj)]

S
j=1

∥∥∥∥∥∥
V

. (2)

Using the Kronecker delta (δij = 1 if i = j and δij = 0 if i 6= j), the last term [q(µj)u(µj)]
S
j=1 ∈ V S can

be factored into [
u(µj)δjj′

]S,S
j=1,j′=1

[q(µj)]
S
j=1 =

[
u(µj)δjj′

]S,S
j=1,j′=1

Φ[qi]
N
i=0, (3)

where we have expanded the polynomial q using the basis6 {φi}Ni=0: q(µ) =
∑N
i=0 qiφi(µ), with coefficients

{qi}Ni=0 ⊂ C.

5The superscript H denotes conjugate transposition, i.e. AH = A
>

.
6In theory, nothing prevents us from using different bases for IN and q.

2



Combining (2) and (3), it is useful to consider the (N + 1) × (N + 1) Hermitian matrix with entries
(0 ≤ i, i′ ≤ N)

Gii′ =

〈
S∑

j′=1

((
ΦHΦ

)−1
ΦH
)
Nj′

(Φ)j′i′u(µj′),

S∑
j=1

((
ΦHΦ

)−1
ΦH
)
Nj

(Φ)jiu(µj)

〉
V

. (4)

If (?) is quadratic (resp. linear) in [qi]
N
i=0, then we can cast the computation of the denominator as a

quadratically (resp. linearly) constrained quadratic program involving G.

2.1 Quadratic constraint

We constrain [q̂i]
N
i=0 to have unit (Euclidean) norm. The resulting optimization problem can be cast as

a minimal (normalized) eigenvector problem for G in (4). More explicitly,

[q̂i]
N
i=0 = arg min

q∈CN+1

‖q‖2=1

qHGq.

2.2 Linear constraint

We constrain q̂N = 1, thus forcing q to be monic, with degree exactly N . Given G in (4), the resulting
optimization problem can be solved rather easily as:

[q̂i]
N
i=0 =

G−1eN+1

e>N+1G
−1eN+1

, with eN+1 = [0, . . . , 0, 1]> ∈ CN+1.

3 Barycentric coefficients as degrees of freedom

Here we assume that the sample points are distinct, and such that N = S − 1. We can choose for
convenience a non-hierarchical basis, dependent on the sample points, for q and IN , taking inspiration
from barycentric interpolation:

φi(µ) =

S∏
j=1
j 6=i+1

(µ− µj). (5)

Since all elements of the basis are monic and of degree exactly N , the minimization problem can be cast
as

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥∥[1, . . . , 1︸ ︷︷ ︸
N+1

]
(
ΦHΦ

)−1
ΦH
[
u(µj)δjj′

]S,S
j=1,j′=1

Φ[qi]
N
i=0

∥∥∥∥∥∥
V

. (6)

At the same time, it is easy to see from (5) that the Vandermonde-like matrix Φ is diagonal, so that

(
ΦHΦ

)−1
ΦH
[
u(µj)δjj′

]S,S
j=1,j′=1

Φ =
(
ΦHΦ

)−1
ΦHΦ

[
u(µj)δjj′

]S,S
j=1,j′=1

=
[
u(µj)δjj′

]S,S
j=1,j′=1

,

and

q̂ = arg min
q∈CN+1

(?)

∥∥∥∥∥
N∑
i=0

u(µi+1)qi

∥∥∥∥∥
V

. (7)

Considering (7), it is useful to define the (N + 1) × (N + 1) Hermitian (“snapshot Gramian”) matrix
with entries (0 ≤ i, i′ ≤ N)

Gii′ = 〈u(µi′+1), u(µi+1)〉V . (8)

So, once again, if (?) is quadratic (resp. linear) in [qi]
N
i=0, then we can cast the computation of the

denominator as a quadratically (resp. linearly) constrained quadratic program involving G.
Before specifying the kind of normalization enforced, it is important to make a remark on numerical
stability. The basis in (5) is actually just a (i-dependent) factor away from being the Lagrangian one
(for which φi(µj) would equal δ(i+1)j instead of δ(i+1)j

∏
k 6=i+1(µj −µk) as is does in our case). As such,

it is generally a bad idea to numerically evaluate q starting from its expansion coefficients with respect

3



to {φi}Ni=0. We get around this by exploiting the following trick, whose foundation is in [2, Section

2.3.3]: the roots of q̂ =
∑N
i=0 q̂iφi are the N finite eigenvalues λ of the generalized (N + 2) × (N + 2)

eigenproblem

det




0 q̂0 · · · q̂N
1 µ1

...
. . .

1 µS

−


0
1

. . .

1

λ
 = 0. (9)

This computation is numerically more stable than most manipulations of a polynomial in the basis (5).
Once the roots of q̂ have been computed, one can either convert it to nodal form (10) or forgo using q̂

completely, in favor of a Heaviside like approximation involving the newly computed roots {λ̂i}Ni=1 as
poles:

p̂(µ)

q̂(µ)
 

N∑
i=1

r̂i

µ− λ̂i
+ p̃(µ),

with p̃, e.g., a polynomial (of degree at most S −N − 1) or a combination of radial basis functions.

3.1 Quadratic constraint

We constrain [q̂i]
N
i=0 to have unit (Euclidean) norm. The resulting optimization problem can be cast as

a minimal (normalized) eigenvector problem for G in (8). More explicitly,

[q̂i]
N
i=0 = arg min

q∈CN+1

‖q‖2=1

qHGq.

3.2 Linear constraint

We constrain
∑N
i=0 q̂i = 1, so that the polynomial q̂ is monic. Given G in (8), the resulting optimization

problem can be solved rather easily as:

[q̂i]
N
i=0 =

G−11N+1

1>N+1G
−11N+1

, with 1N+1 = [1, . . . , 1]> ∈ CN+1.

4 Poles as degrees of freedom

Here we assume that the sample points are distinct. One can avoid expressing q explicitly and work
directly with its roots by employing a nodal form

q(µ) =

N∏
i=1

(µ− λi), (10)

with {λi}Ni=1 ⊂ C. (It is important to note that we are constraining q to have degree exactly N .)
The optimization problem that allows to find the desired poles can now be cast as

{λ̂i}Ni=1 = arg min
{λi}Ni=1⊂C

∥∥∥∥∥ dN

dµN
IN
(((

µj , u(µj)

N∏
i=1

(µj − λi)
))S
j=1

)∥∥∥∥∥
V

,

which, if IN is expressed via a hierarchical basis, is equivalent to

{λ̂i}Ni=1 = arg min
{λi}Ni=1⊂C

∥∥∥∥∥∥[0, . . . , 0︸ ︷︷ ︸
N

, 1]
(
ΦHΦ

)−1
ΦH
[
u(µj)δjj′

]S,S
j=1,j′=1

[
N∏
i=1

(µj − λi)

]S
j=1

∥∥∥∥∥∥
2

V

(11)

(the outer square has been added for later convenience). This problem is nonconvex and highly nonlinear
with respect to {λi}Ni=1 ⊂ C, and an iterative method is necessary for its solution.
Two observations aid us here:

4



• The target functional has a relatively simple structure, allowing to compute exactly its Jacobian
and Hessian with respect to the poles. Explicitly, for all {λi}Ni=1 ⊂ C and k = 1, . . . , N , the partial
derivative with respect to λk at {λi}Ni=1 ⊂ C equals

− 2

〈
yH [q(µj)]

S
j=1 ,y

H

[
q(µj)

µj − λk

]S
j=1

〉
V

(12)

where q is given in (10) and

y =
[
u(µj)δjj′

]S,S
j=1,j′=1

Φ
(
ΦHΦ

)−1
[0, . . . , 0︸ ︷︷ ︸

N

, 1]> ∈ V S

does not change as the iterations proceed. Similarly, for all {λi}Ni=1 ⊂ C and k, k′ = 1, . . . , N , the
second order partial derivative with respect to λk and λk′ at {λi}Ni=1 ⊂ C is

2

〈
yH
[
q(µj)

µj − λk′

]S
j=1

,yH
[
q(µj)

µj − λk

]S
j=1

〉
V

+

+ 2(1− δkk′)

〈
yH [q(µj)]

S
j=1 ,y

H

[
q(µj)

(µj − λk)(µj − λk′)

]S
j=1

〉
V

(13)

Hence, we can use Newton’s method.

• Due to the iterative nature of the solution strategy, an initial guess of the optimal poles is necessary.
Luckily, we can employ any of the other four methods to this aim. More precisely, we apply
DOMINANT as a preliminary step, compute the roots of the resulting q̂, and use them as initial guess
for the Newton iterations.

As stopping criterion for Newton’s method, we use the (relative) norm of the increment:

N∑
i=1

∣∣∣λ(iter+1)
i − λ(iter)

i

∣∣∣2 ≤ tolerance︸ ︷︷ ︸
∼10−10

N∑
i=1

∣∣∣λ(iter+1)
i

∣∣∣2 .
Since the initial guess is quite good, usually just a few (most often, 1) Newton iterations are necessary.

5 Minor observations

• For BARYCENTRYC *, a specific choice of polynomial basis for IN was used to diagonalize the func-
tional. Under the assumptions that the sample points are distinct and that N = S − 1, one
can employ the quasi-Lagrangian basis (5) to expand IN in the other approaches as well, thus
simplifying significantly the structure of (1):

q̂ = arg min
q∈PN (C;C)

(?)

∥∥∥∥∥∥∥∥
S∑
j=1

q(µj)u(µj)

S∏
j′=1
j′ 6=j

1

µj − µj′

∥∥∥∥∥∥∥∥
V

.

Numerically, this has repercussions on the computation of the Gramian (4) and of the vector y in
(12).

• In general, NORM and BARYCENTRIC NORM can be expected to be more numerically stable than
DOMINANT and BARYCENTRIC AVERAGE, respectively. This is due to the fact that the normalization
is enforced in a more numerically robust fashion.

• If the snapshots are orthonormalized via POD7, all the V -inner products (resp. norms) are recast as
Euclidean inner products (resp. norms) involving the R factor of the generalized (V -orthonormal)
QR decomposition of the snapshots.

7./rrompy/sampling/engines/sampling_engine_pod.py

5



• If a univariate rational surrogate is built in the scope of multivariate pivoted approximation8, the
rational approximant is converted into a Heaviside/nodal representation when different surrogates
are combined. As such, the BARYCENTRYC * or NODAL approaches may be preferable to avoid extra
computations, as well as additional round-off artifacts.

References

[1] D. Pradovera, Interpolatory rational model order reduction of parametric problems lacking uniform
inf-sup stability, SIAM J. Numer. Anal. 58 (2020) 2265–2293. doi:10.1137/19M1269695.

[2] G. Klein, Applications of Linear Barycentric Rational Interpolation, PhD Thesis no. 1762, Université
de Fribourg (2012).

8./rrompy/reduction_methods/pivoted/*

6


	Aim of approximation
	Polynomial coefficients as degrees of freedom
	Quadratic constraint
	Linear constraint

	Barycentric coefficients as degrees of freedom
	Quadratic constraint
	Linear constraint

	Poles as degrees of freedom
	Minor observations

