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Introduction

This document provides an explanation for the numerical method provided by the class Rational
Interpolany | and daughters, e.g. Rational Interpolant Greedyﬂ as well as most of the pivoted
approximant

We restrict the discussion to the single-parameter case, and most of the focus will be dedicated to the
impact of the functionalSolve parameter, whose allowed values are

e NORM (default): see Section allows for derivative information, i.e. repeated sample points.
e DOMINANT: see Section allows for derivative information, i.e. repeated sample points.

e BARYCENTRIC_NORM: see Section does not allow for a Least Squares (LS) approach.

e BARYCENTRIC_AVERAGE: see Section does not allow for a Least Squares (LS) approach.

The main reference throughout the present document is [IJ.

1 Aim of approximation

We seek an approximation of u : C — V, with (V, (-,),,) a complexﬂ Hilbert space (with induced norm
II-[ly/), of the form p/q, where p: C — V and q: C — C. For a given denominator g, the numerator p is
found by interpolation (possibly, LS or based on radial basis functions) of gu. Hence, here we focus on
the computation of the denominator ¢.

Other than the choice of target function u, the parameters which affect the computation of § are:

e mus C C ({y; le below); for all functionalSolve values but NORM and DOMINANT, the S points
must be distinct.

e N € N (NN below); for BARYCENTRIC_*, N must equal S — 1.
e polybasisO € {"CHEBYSHEV", "LEGENDRE", "MONOMIAL"}; only for NORM and DOMINANT.

To simplify the notation, we set £ = S — 1. For simplicity, we will consider only the case of S dis-
tinct sample points. One can deal with the case of confluent sample points by extending the standard
(Lagrange) interpolation steps to Hermite-Lagrange ones.

The main motivation behind the method involves the modified approximation problem
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where g : C — C is a polynomial of degree < N < E, and ZF : (C x V)% — P¥(C;V) is a polynomial
interpolation operator, which maps S samples of a function (which lie in V') to a polynomial of degree
< E with coefficients in V.

More precisely, let
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1. /rrompy/reduction_methods/standard/rational_interpolant.py

2. /rrompy/reduction_methods/standard/greedy/rational_interpolant_greedy.py

3. /rrompy/reduction_methods/pivoted/{, greedy/}rational_interpolant_*.py

4The inner product is linear (resp. conjugate linear) in the first (resp. second) argument: (o, Bw)y, = aoff (v, w)y,.



with M either N or E, and W either C or V. We set
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In RROMPy, we compute (LS-)interpolants by employing normal equations: given a basis {¢;}£, of
PZ(C; C), we expand
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and observe that, for optimality, the coefficients {c;}£ , C V must satisfy

> e =

E
j=11=0

I Mm
||
o
S

i.e., in matrix fornﬂ

o= ([0 o], ) [] i

s
eV —.pHeCS%S —.HeCSxS —.pHeCS%S evs

-1

In practice the polynomial basis {¢;}£ ; is determined by the value of polybasisO:

e If polybasis0O = "CHEBYSHEV", then ¢y (u) = p* for k € {0,1} and ¢ (1) = 2udr_1(p) — pr—2(1)
for k > 2.

e If polybasisO = "LEGENDRE", then ¢y () = p* for k € {0,1} and ¢y (1) = (2 — 1/k)pugr_1(p) —
(1 =1/k)pp—2(p) for k > 2.

e If polybasisO = "MONOMIAL", then ¢y () = u* for k > 0.
The actual denominator ¢ is found as
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where (%) is a normalization condition (which changes depending on functionalSolve) to exclude the
trivial minimizer ¢ = 0.

Broadly speaking, the methods described differ in terms of the constraint (x), as well as of the degrees
of freedom which are chosen to represent the denominator q.
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2 Polynomial coefficients as degrees of freedom

If the polynomial basis {¢;}Z , is hierarchical (as the three ones above), then the E-th derivative of 7%
coincides with the coefﬁment cg, and we have
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Using the Kronecker delta (6;; = 1 if i = j and ¢;; = 0 if ¢ # j), the last term [q(Mj>U(Uj)]]S:1 € VS can

be factored into
S,8 S,S -
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5The superscript ¥ denotes adjunction (conjugate transposition), i.e. AH = A",



where ® is the S x (N + 1) matrix obtained by extracting the first N 4+ 1 columns of ®. We remark

that we have expanded the polynomial ¢ using the ba&! {030 q(p) = Ziio qi0i (1), with coefficients

{QZ}z 0 cC.
Combining (2) and (3], it is useful to consider the (N 4 1) x (N + 1) Hermitian matrix with entries
(0<i,i"<N)
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If (%) is quadratic (vesp. linear) in [g;]Y,, then we can cast the computation of the denominator as a
quadratically (resp. linearly) constrained quadratic program involving G.

2.1 Quadratic constraint

We constrain [g;]¥, to have unit (Euclidean) norm. The resulting optimization problem can be cast as
a minimal (normalized) eigenvector problem for G in . More explicitly,

(@)Y, = argminq” Gq.
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2.2 Linear constraint

We constrain ¢y = 1, thus forcing ¢ to be monic, with degree exactly N. Given G in , the resulting
optimization problem can be solved rather easily as:
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3 Barycentric coefficients as degrees of freedom
Here we assume that the sample points are distinct, and that N = FE, so that, in particular, ® = d.

We can choose for convenience a non-hierarchical basis, dependent on the sample points, for ¢ and Z7,
taking inspiration from barycentric interpolation:
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Since all elements of the basis are monic and of degree exactly N, the minimization problem can be cast
as
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At the same time, it is easy to see from that the Vandermonde-like matrix @ is diagonal, so that
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Considering (7), it is useful to define the S x S Hermitian (“snapshot Gramian”) matrix with entries
(0<ii' < N)
Giir = (u(pirs1), ulpitn))y - (8)

6In theory, nothing prevents us from using different bases for Z¥ and ¢, cf. Section




So, once again, if (x) is quadratic (resp. linear) in [g;]Y,, then we can cast the computation of the
denominator as a quadratically (resp. linearly) constrained quadratic program involving G.

Before specifying the kind of normalization enforced, it is important to make a remark on numerical
stability. The basis in is actually just a (i-dependent) factor away from being the Lagrangian one
(for which ¢;(p;) would equal d(;11); instead of
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as it does in our case). As such, it is generally a bad idea to numerically evaluate ¢ starting from its
expansion coefficients with respect to {¢;}~,. We get around this by exploiting the following trick,
whose foundation is in [2, Section 2.3.3]: the roots of ¢ = Zil\io G:¢; are the N finite eigenvalues \ of the
generalized (N 4+ 2) x (N + 2) eigenproblem
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This computation is numerically more stable than most other manipulations of a polynomial in the basis
. Once the roots of ¢ have been computed, one can either convert it to nodal form

) o< [T(n = %) (10)

or forgo using g completely, in favor of a Heaviside-like approximation involving the newly computed
roots {\;} ¥, as poles:
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See the final paragraph in Section [ for a slightly more detailed motivation of why the Heaviside form
of the approximant might be more useful than the standard rational one p/q in practice.

3.1 Quadratic constraint

We constrain [g;]¥, to have unit (Euclidean) norm. The resulting optimization problem can be cast as
a minimal (normalized) eigenvector problem for G in . More explicitly,

@]i]\io = arg min q?Gq.
quN+1
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3.2 Linear constraint

We constrain Eij\io @; = 1, so that the polynomial ¢ is monic. Given G in , the resulting optimization
problem can be solved rather easily as:
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4 Minor observations

e If N = E, normal equations are not necessary to compute Z%, since ® is square and can be
inverted directly. However, in practical applications, it may be useful to decrease the degree E
of the interpolant (which, in our presentation, we kept fixed to S — 1 for simplicity) to overcome
numerical instabilities which may arise in the (pseudo-)inversion of ®. If this happens, ® becomes
non-square, and normal equations are the only option.



e For BARYCENTRYC_*, a specific choice of polynomial basis for Z¥ was used to diagonalize the func-
tional. Under the assumptions that the sample points are distinct and that N = F, one can employ
the quasi-Lagrangian basis (5 to expand ZF in the other approaches as well, thus simplifying sig-
nificantly the structure of (|1)):
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Numerically, this has repercussions on the computation of the term (@ <I>)_1<I>H in (4).

e In general, NORM and BARYCENTRIC_NORM can be expected to be more numerically stable than
DOMINANT and BARYCENTRIC_AVERAGE, respectively. This is due to the fact that the normalization
is enforced in a more numerically robust fashion.

e If the snapshots are orthonormalized via PO[ﬂ all the V-inner products (resp. norms) are recast as
Euclidean inner products (resp. norms) involving the R factor of the generalized (V-orthonormal)
QR decomposition of the snapshots.

e If a univariate rational surrogate is built in the scope of multivariate pole-matching-based pivoted
approximatiorﬂ the rational approximant is converted into a Heaviside/nodal representation when
different surrogates are combined. As such, the BARYCENTRIC * approach may be preferable to
avoid extra computations, as well as additional round-off artifacts.
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