Page MenuHomec4science

helmholtz_problem_engine.py
No OneTemporary

File Metadata

Created
Wed, May 1, 11:48

helmholtz_problem_engine.py

# Copyright (C) 2018 by the RROMPy authors
#
# This file is part of RROMPy.
#
# RROMPy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RROMPy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RROMPy. If not, see <http://www.gnu.org/licenses/>.
#
import numpy as np
import scipy.sparse as scsp
import fenics as fen
from .laplace_base_problem_engine import LaplaceBaseProblemEngine
from rrompy.utilities.base.types import ScOp
from rrompy.utilities.fenics import fenZERO, fenONE
from rrompy.utilities.base import verbosityDepth
__all__ = ['HelmholtzProblemEngine']
class HelmholtzProblemEngine(LaplaceBaseProblemEngine):
"""
Solver for generic Helmholtz problems with parametric wavenumber.
- \nabla \cdot (a \nabla u) - omega^2 * n**2 * u = f in \Omega
u = u0 on \Gamma_D
\partial_nu = g1 on \Gamma_N
\partial_nu + h u = g2 on \Gamma_R
Attributes:
verbosity: Verbosity level.
BCManager: Boundary condition manager.
V: Real FE space.
u: Generic trial functions for variational form evaluation.
v: Generic test functions for variational form evaluation.
As: Scipy sparse array representation (in CSC format) of As.
bs: Numpy array representation of bs.
bsH: Numpy array representation of homogeneized bs.
energyNormMatrix: Scipy sparse matrix representing inner product over
V.
bsmu: Mu value of last bs evaluation.
liftDirichletDatamu: Mu value of last Dirichlet datum evaluation.
liftedDirichletDatum: Dofs of Dirichlet datum lifting.
mu0BC: Mu value of last Dirichlet datum lifting.
degree_threshold: Threshold for ufl expression interpolation degree.
omega: Value of omega.
diffusivity: Value of a.
refractionIndex: Value of n.
forcingTerm: Value of f.
DirichletDatum: Value of u0.
NeumannDatum: Value of g1.
RobinDatumG: Value of g2.
RobinDatumH: Value of h.
DirichletBoundary: Function handle to \Gamma_D.
NeumannBoundary: Function handle to \Gamma_N.
RobinBoundary: Function handle to \Gamma_R.
ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries).
A0: Scipy sparse array representation (in CSC format) of A0.
A1: Scipy sparse array representation (in CSC format) of A1.
b0: Numpy array representation of b0.
dsToBeSet: Whether ds needs to be set.
"""
nAs = 2
rescalingExp = 2.
def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10,
timestamp : bool = True):
super().__init__(degree_threshold = degree_threshold,
verbosity = verbosity, timestamp = timestamp)
self.omega = 1.
self.refractionIndex = fenONE
@property
def refractionIndex(self):
"""Value of n."""
return self._refractionIndex
@refractionIndex.setter
def refractionIndex(self, refractionIndex):
self.resetAs()
if not isinstance(refractionIndex, (list, tuple,)):
refractionIndex = [refractionIndex, fenZERO]
self._refractionIndex = refractionIndex
def A(self, mu:complex, der : int = 0) -> ScOp:
"""Assemble (derivative of) operator of linear system."""
Anull = self.checkAInBounds(der)
if Anull is not None: return Anull
self.autoSetDS()
if der <= 0 and self.As[0] is None:
if self.verbosity >= 20:
verbosityDepth("INIT", "Assembling operator term A0.",
timestamp = self.timestamp)
DirichletBC0 = fen.DirichletBC(self.V, fenZERO,
self.DirichletBoundary)
aRe, aIm = self.diffusivity
hRe, hIm = self.RobinDatumH
termNames = ["diffusivity", "RobinDatumH"]
parsRe = self.iterReduceQuadratureDegree(zip(
[aRe, hRe],
[x + "Real" for x in termNames]))
parsIm = self.iterReduceQuadratureDegree(zip(
[aIm, hIm],
[x + "Imag" for x in termNames]))
a0Re = (aRe * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx
+ hRe * fen.dot(self.u, self.v) * self.ds(1))
a0Im = (aIm * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx
+ hIm * fen.dot(self.u, self.v) * self.ds(1))
A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe)
A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm)
DirichletBC0.apply(A0Re)
DirichletBC0.zero(A0Im)
A0ReMat = fen.as_backend_type(A0Re).mat()
A0ImMat = fen.as_backend_type(A0Im).mat()
A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR()
A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR()
self.As[0] = (scsp.csr_matrix((A0Rev, A0Rec, A0Rer),
shape = A0ReMat.size)
+ 1.j * scsp.csr_matrix((A0Imv, A0Imc, A0Imr),
shape = A0ImMat.size))
if self.verbosity >= 20:
verbosityDepth("DEL", "Done assembling operator term.",
timestamp = self.timestamp)
if der <= 1 and self.As[1] is None:
if self.verbosity >= 20:
verbosityDepth("INIT", "Assembling operator term A1.",
timestamp = self.timestamp)
DirichletBC0 = fen.DirichletBC(self.V, fenZERO,
self.DirichletBoundary)
nRe, nIm = self.refractionIndex
n2Re, n2Im = nRe * nRe - nIm * nIm, 2 * nRe * nIm
parsRe = self.iterReduceQuadratureDegree(zip([n2Re],
["refractionIndexSquaredReal"]))
parsIm = self.iterReduceQuadratureDegree(zip([n2Im],
["refractionIndexSquaredImag"]))
a1Re = - n2Re * fen.dot(self.u, self.v) * fen.dx
a1Im = - n2Im * fen.dot(self.u, self.v) * fen.dx
A1Re = fen.assemble(a1Re, form_compiler_parameters = parsRe)
A1Im = fen.assemble(a1Im, form_compiler_parameters = parsIm)
DirichletBC0.zero(A1Re)
DirichletBC0.zero(A1Im)
A1ReMat = fen.as_backend_type(A1Re).mat()
A1ImMat = fen.as_backend_type(A1Im).mat()
A1Rer, A1Rec, A1Rev = A1ReMat.getValuesCSR()
A1Imr, A1Imc, A1Imv = A1ImMat.getValuesCSR()
self.As[1] = (scsp.csr_matrix((A1Rev, A1Rec, A1Rer),
shape = A1ReMat.size)
+ 1.j * scsp.csr_matrix((A1Imv, A1Imc, A1Imr),
shape = A1ImMat.size))
if self.verbosity >= 20:
verbosityDepth("DEL", "Done assembling operator term.",
timestamp = self.timestamp)
if der == 0:
return self.As[0] + mu**2 * self.As[1]
return self.As[1]

Event Timeline