Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90757029
linalg_arnoldi_engine.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 11:49
Size
4 KB
Mime Type
text/x-python
Expires
Wed, Nov 6, 11:49 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22130136
Attached To
R6746 RationalROMPy
linalg_arnoldi_engine.py
View Options
# Copyright (C) 2018 by the RROMPy authors
#
# This file is part of RROMPy.
#
# RROMPy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RROMPy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RROMPy. If not, see <http://www.gnu.org/licenses/>.
#
from
copy
import
copy
import
numpy
as
np
from
rrompy.linalg.pod_engine
import
PODEngine
from
rrompy.linalg.linalg_krylov_engine
import
LinAlgKrylovEngine
from
rrompy.utilities.base.types
import
Np1D
,
Np2D
,
List
__all__
=
[
'LinAlgArnoldiEngine'
]
class
LinAlgArnoldiEngine
(
LinAlgKrylovEngine
):
"""HERE"""
def
__init__
(
self
,
As
:
List
[
Np2D
],
bs
:
List
[
Np1D
],
energyNormMatrix
:
Np2D
,
mu0
:
complex
=
0.
):
super
()
.
__init__
(
As
,
bs
,
mu0
)
self
.
energyNormMatrix
=
energyNormMatrix
def
resetHistory
(
self
):
super
()
.
resetHistory
()
self
.
HArnoldi
=
None
self
.
RArnoldi
=
None
self
.
RHSs
=
None
self
.
samplesAug
=
None
@property
def
energyNormMatrix
(
self
):
"""Value of energyNormMatrix. Its assignment resets history."""
return
self
.
_energyNormMatrix
@energyNormMatrix.setter
def
energyNormMatrix
(
self
,
energyNormMatrix
):
self
.
_energyNormMatrix
=
energyNormMatrix
self
.
PODEngine
=
PODEngine
(
self
.
energyNormMatrix
)
def
preprocesssamples
(
self
):
ns
=
self
.
nsamples
if
ns
<=
0
or
self
.
nAs
()
<=
1
:
return
return
self
.
samplesAug
[:,
ns
-
1
]
.
reshape
((
self
.
nAs
()
-
1
,
-
1
))
.
T
def
preprocessb
(
self
,
bs
:
Np1D
=
None
,
overwrite
:
bool
=
False
):
if
bs
is
None
:
bs
=
self
.
bs
ns
=
self
.
nsamples
if
ns
<
len
(
bs
):
r
=
copy
(
bs
[
ns
])
else
:
r
=
np
.
zeros_like
(
bs
[
0
])
if
min
(
len
(
bs
),
ns
+
1
)
>
1
:
if
ns
==
1
:
r
=
r
/
self
.
RArnoldi
[
0
,
0
]
else
:
r
=
((
r
-
self
.
RHSs
[:,
:
ns
-
1
]
.
dot
(
self
.
RArnoldi
[:
ns
-
1
,
ns
-
1
]))
/
self
.
RArnoldi
[
ns
-
1
,
ns
-
1
])
if
overwrite
:
self
.
RHSs
[:,
ns
-
1
]
=
r
else
:
if
ns
==
1
:
self
.
RHSs
=
r
.
reshape
((
-
1
,
1
))
else
:
self
.
RHSs
=
np
.
hstack
((
self
.
RHSs
,
r
[:,
None
]))
return
r
def
postprocessu
(
self
,
u
:
Np1D
,
overwrite
:
bool
=
False
):
ns
=
self
.
nsamples
if
ns
==
0
:
u
,
h
,
uAug
=
self
.
PODEngine
.
GS
(
u
,
np
.
empty
((
0
,
0
)))
r
=
h
[
0
]
uAug
=
np
.
pad
(
u
,
((
self
.
nAs
()
-
2
)
*
u
.
size
,
0
),
"constant"
)
else
:
uAug
=
np
.
concatenate
((
self
.
samplesAug
[
u
.
size
:,
ns
-
1
],
u
),
axis
=
None
)
u
,
h
,
uAug
=
self
.
PODEngine
.
GS
(
u
,
self
.
samples
[:,
:
ns
],
ns
,
uAug
,
self
.
samplesAug
[:,
:
ns
])
if
overwrite
:
self
.
HArnoldi
[:
ns
+
1
,
ns
]
=
h
if
ns
>
0
:
r
=
self
.
HArnoldi
[:
ns
+
1
,
1
:
ns
+
1
]
.
dot
(
self
.
RArnoldi
[:
ns
,
ns
-
1
])
self
.
RArnoldi
[:
ns
+
1
,
ns
]
=
r
self
.
samplesAug
[:,
ns
]
=
uAug
else
:
if
self
.
nsamples
==
0
:
self
.
HArnoldi
=
h
.
reshape
((
1
,
1
))
self
.
RArnoldi
=
r
.
reshape
((
1
,
1
))
self
.
samplesAug
=
uAug
.
reshape
((
-
1
,
1
))
else
:
self
.
HArnoldi
=
np
.
block
([[
self
.
HArnoldi
,
h
[:
-
1
,
None
]],
[
np
.
zeros
((
1
,
self
.
nsamples
)),
h
[
-
1
]]])
if
ns
>
0
:
r
=
self
.
HArnoldi
[:
ns
+
1
,
1
:
ns
+
1
]
.
dot
(
self
.
RArnoldi
[:
ns
,
ns
-
1
])
self
.
RArnoldi
=
np
.
block
([[
self
.
RArnoldi
,
r
[:
-
1
,
None
]],
[
np
.
zeros
((
1
,
self
.
nsamples
)),
r
[
-
1
]]])
self
.
samplesAug
=
np
.
hstack
((
self
.
samplesAug
,
uAug
[:,
None
]))
return
u
def
preallocateSamples
(
self
,
u
:
Np1D
,
n
:
int
):
super
()
.
preallocateSamples
(
u
,
n
)
h
=
self
.
HArnoldi
r
=
self
.
RArnoldi
saug
=
self
.
samplesAug
self
.
HArnoldi
=
np
.
zeros
((
n
,
n
),
dtype
=
u
.
dtype
)
self
.
HArnoldi
[
0
,
0
]
=
h
[
0
,
0
]
self
.
RArnoldi
=
np
.
zeros
((
n
,
n
),
dtype
=
u
.
dtype
)
self
.
RArnoldi
[
0
,
0
]
=
r
[
0
,
0
]
self
.
RHSs
=
np
.
empty
((
u
.
size
,
n
-
1
),
dtype
=
u
.
dtype
)
self
.
samplesAug
=
np
.
empty
((
saug
.
shape
[
0
],
n
),
dtype
=
u
.
dtype
)
self
.
samplesAug
[:,
0
]
=
saug
[:,
0
]
Event Timeline
Log In to Comment