Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90738950
rational_pade.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 07:57
Size
17 KB
Mime Type
text/x-python
Expires
Wed, Nov 6, 07:57 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22127204
Attached To
R6746 RationalROMPy
rational_pade.py
View Options
# Copyright (C) 2018 by the RROMPy authors
#
# This file is part of RROMPy.
#
# RROMPy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RROMPy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RROMPy. If not, see <http://www.gnu.org/licenses/>.
#
from
copy
import
deepcopy
as
copy
import
numpy
as
np
from
rrompy.reduction_methods.base
import
checkRobustTolerance
from
rrompy.reduction_methods.trained_model
import
(
TrainedModelData
,
TrainedModelPade
as
tModel
)
from
.generic_centered_approximant
import
GenericCenteredApproximant
from
rrompy.utilities.base.types
import
(
Np1D
,
Np2D
,
Tuple
,
DictAny
,
HFEng
,
paramVal
,
paramList
,
sampList
)
from
rrompy.utilities.base
import
verbosityDepth
from
rrompy.utilities.poly_fitting.polynomial
import
(
nextDerivativeIndices
,
hashDerivativeToIdx
as
hashD
,
hashIdxToDerivative
as
hashI
)
from
rrompy.utilities.exception_manager
import
(
RROMPyException
,
RROMPyAssert
,
RROMPyWarning
)
__all__
=
[
'RationalPade'
]
class
RationalPade
(
GenericCenteredApproximant
):
"""
ROM single-point fast Pade' approximant computation for parametric
problems.
Args:
HFEngine: HF problem solver.
mu0(optional): Default parameter. Defaults to 0.
approxParameters(optional): Dictionary containing values for main
parameters of approximant. Recognized keys are:
- 'POD': whether to compute POD of snapshots; defaults to True;
- 'S': total number of samples current approximant relies upon;
- 'M': degree of Pade' approximant numerator; defaults to 0;
- 'N': degree of Pade' approximant denominator; defaults to 0;
- 'robustTol': tolerance for robust Pade' denominator management;
defaults to 0.
Defaults to empty dict.
homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults
to False.
verbosity(optional): Verbosity level. Defaults to 10.
Attributes:
HFEngine: HF problem solver.
mu0: Default parameter.
homogeneized: Whether to homogeneize Dirichlet BCs.
approxParameters: Dictionary containing values for main parameters of
approximant. Recognized keys are in parameterList.
parameterListSoft: Recognized keys of soft approximant parameters:
- 'POD': whether to compute POD of snapshots;
- 'M': degree of Pade' approximant numerator;
- 'N': degree of Pade' approximant denominator;
- 'robustTol': tolerance for robust Pade' denominator management.
parameterListCritical: Recognized keys of critical approximant
parameters:
- 'S': total number of samples current approximant relies upon.
POD: Whether to compute QR factorization of derivatives.
S: Number of solution snapshots over which current approximant is
based upon.
M: Numerator degree of approximant.
N: Denominator degree of approximant.
robustTol: Tolerance for robust Pade' denominator management.
E: Complete derivative depth level of S.
uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as
sampleList.
lastSolvedHF: Parameter(s) corresponding to last computed high fidelity
solution(s) as parameterList.
uAppReduced: Reduced approximate solution(s) with parameter(s)
lastSolvedApp as sampleList.
lastSolvedAppReduced: Parameter(s) corresponding to last computed
reduced approximate solution(s) as parameterList.
uApp: Approximate solution(s) with parameter(s) lastSolvedApp as
sampleList.
lastSolvedApp: Parameter(s) corresponding to last computed approximate
solution(s) as parameterList.
G: Square Numpy 2D vector of size (N+1) corresponding to Pade'
denominator matrix (see paper).
"""
def
__init__
(
self
,
HFEngine
:
HFEng
,
mu0
:
paramVal
=
None
,
approxParameters
:
DictAny
=
{},
homogeneized
:
bool
=
False
,
verbosity
:
int
=
10
,
timestamp
:
bool
=
True
):
self
.
_preInit
()
self
.
_addParametersToList
([
"M"
,
"N"
,
"robustTol"
],
[
0
,
0
,
0
])
super
()
.
__init__
(
HFEngine
=
HFEngine
,
mu0
=
mu0
,
approxParameters
=
approxParameters
,
homogeneized
=
homogeneized
,
verbosity
=
verbosity
,
timestamp
=
timestamp
)
self
.
_postInit
()
@property
def
M
(
self
):
"""Value of M.."""
return
self
.
_M
@M.setter
def
M
(
self
,
M
):
if
M
<
0
:
raise
RROMPyException
(
"M must be non-negative."
)
self
.
_M
=
M
self
.
_approxParameters
[
"M"
]
=
self
.
M
if
hasattr
(
self
,
"E"
)
and
self
.
E
<
self
.
M
:
RROMPyWarning
(
"Prescribed S is too small. Decreasing M."
)
self
.
M
=
self
.
E
@property
def
N
(
self
):
"""Value of N."""
return
self
.
_N
@N.setter
def
N
(
self
,
N
):
if
N
<
0
:
raise
RROMPyException
(
"N must be non-negative."
)
self
.
_N
=
N
self
.
_approxParameters
[
"N"
]
=
self
.
N
if
hasattr
(
self
,
"E"
)
and
self
.
E
<
self
.
N
:
RROMPyWarning
(
"Prescribed S is too small. Decreasing N."
)
self
.
N
=
self
.
E
@property
def
robustTol
(
self
):
"""Value of tolerance for robust Pade' denominator management."""
return
self
.
_robustTol
@robustTol.setter
def
robustTol
(
self
,
robustTol
):
if
robustTol
<
0.
:
RROMPyWarning
((
"Overriding prescribed negative robustness "
"tolerance to 0."
))
robustTol
=
0.
self
.
_robustTol
=
robustTol
self
.
_approxParameters
[
"robustTol"
]
=
self
.
robustTol
@property
def
S
(
self
):
"""Value of S."""
return
self
.
_S
@S.setter
def
S
(
self
,
S
):
GenericCenteredApproximant
.
S
.
fset
(
self
,
S
)
self
.
E
=
np
.
sum
(
hashI
(
np
.
prod
(
self
.
S
),
self
.
npar
))
-
1
if
hasattr
(
self
,
"_M"
):
self
.
M
=
self
.
M
if
hasattr
(
self
,
"_N"
):
self
.
N
=
self
.
N
def
_setupDenominator
(
self
):
"""Compute Pade' denominator."""
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot setup denominator."
)
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"INIT"
,
"Starting computation of denominator."
,
timestamp
=
self
.
timestamp
)
while
self
.
N
>
0
:
if
self
.
POD
:
ev
,
eV
=
self
.
findeveVGQR
()
else
:
ev
,
eV
=
self
.
findeveVGExplicit
()
newParameters
=
checkRobustTolerance
(
ev
,
self
.
N
,
self
.
robustTol
)
if
not
newParameters
:
break
self
.
approxParameters
=
newParameters
if
self
.
N
<=
0
:
eV
=
np
.
ones
((
1
,
1
))
q
=
np
.
zeros
(
tuple
([
self
.
N
+
1
]
*
self
.
npar
),
dtype
=
np
.
complex
)
for
j
in
range
(
eV
.
shape
[
0
]):
q
[
tuple
(
hashI
(
j
,
self
.
npar
))]
=
eV
[
j
,
0
]
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"DEL"
,
"Done computing denominator."
,
timestamp
=
self
.
timestamp
)
return
q
def
_setupNumerator
(
self
):
"""Compute Pade' numerator."""
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot setup numerator."
)
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"INIT"
,
"Starting computation of numerator."
,
timestamp
=
self
.
timestamp
)
P
=
np
.
zeros
(
tuple
([
self
.
M
+
1
]
*
self
.
npar
)
+
(
np
.
prod
(
self
.
S
),),
dtype
=
np
.
complex
)
mEnd
=
hashD
([
self
.
M
+
1
]
+
[
0
]
*
(
self
.
npar
-
1
))
nEnd
=
hashD
([
self
.
N
+
1
]
+
[
0
]
*
(
self
.
npar
-
1
))
mnIdxs
=
nextDerivativeIndices
([],
self
.
npar
,
max
(
mEnd
,
nEnd
))
for
j
in
range
(
mEnd
):
mIdx
=
mnIdxs
[
j
]
for
n
in
range
(
nEnd
):
diffIdx
=
[
x
-
y
for
(
x
,
y
)
in
zip
(
mIdx
,
mnIdxs
[
n
])]
if
all
([
x
>=
0
for
x
in
diffIdx
]):
P
[
tuple
(
mIdx
)
+
(
hashD
(
diffIdx
),)]
=
(
self
.
trainedModel
.
data
.
Q
[
tuple
(
mnIdxs
[
n
])])
return
self
.
rescaleByParameter
(
P
)
.
T
def
setupApprox
(
self
):
"""
Compute Pade' approximant. SVD-based robust eigenvalue management.
"""
if
self
.
checkComputedApprox
():
return
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot setup approximant."
)
if
self
.
verbosity
>=
5
:
verbosityDepth
(
"INIT"
,
"Setting up {}."
.
format
(
self
.
name
()),
timestamp
=
self
.
timestamp
)
self
.
computeDerivatives
()
if
self
.
trainedModel
is
None
:
self
.
trainedModel
=
tModel
()
self
.
trainedModel
.
verbosity
=
self
.
verbosity
self
.
trainedModel
.
timestamp
=
self
.
timestamp
data
=
TrainedModelData
(
self
.
trainedModel
.
name
(),
self
.
mu0
,
None
,
self
.
HFEngine
.
rescalingExp
)
data
.
polytype
=
"MONOMIAL"
self
.
trainedModel
.
data
=
data
else
:
self
.
trainedModel
=
self
.
trainedModel
if
self
.
N
>
0
:
Q
=
self
.
_setupDenominator
()
else
:
self
.
setScaleParameter
()
Q
=
np
.
ones
(
1
,
dtype
=
np
.
complex
)
self
.
trainedModel
.
data
.
Q
=
copy
(
Q
)
self
.
trainedModel
.
data
.
scaleFactor
=
self
.
scaleFactor
self
.
trainedModel
.
data
.
projMat
=
copy
(
self
.
samplingEngine
.
samples
(
list
(
range
(
np
.
prod
(
self
.
S
)))))
P
=
self
.
_setupNumerator
()
if
self
.
POD
:
P
=
np
.
tensordot
(
self
.
samplingEngine
.
RPOD
,
P
,
axes
=
([
-
1
],
[
0
]))
self
.
trainedModel
.
data
.
P
=
copy
(
P
)
self
.
trainedModel
.
data
.
approxParameters
=
copy
(
self
.
approxParameters
)
if
self
.
verbosity
>=
5
:
verbosityDepth
(
"DEL"
,
"Done setting up approximant."
,
timestamp
=
self
.
timestamp
)
def
setScaleParameter
(
self
)
->
Np2D
:
"""Compute parameter for rescaling."""
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot compute rescaling factor."
)
self
.
computeDerivatives
()
self
.
scaleFactor
=
[
1.
]
*
self
.
npar
for
d
in
range
(
self
.
npar
):
hashesd
=
[
0
]
for
n
in
range
(
1
,
self
.
E
+
1
):
hashesd
+=
[
hashD
([
0
]
*
(
d
-
1
)
+
[
n
]
+
[
0
]
*
(
self
.
npar
-
d
-
1
))]
if
self
.
POD
:
Rd
=
self
.
samplingEngine
.
RPOD
[:
hashesd
[
-
1
]
+
1
,
hashesd
]
Gd
=
np
.
diag
(
Rd
.
T
.
conj
()
.
dot
(
Rd
))
else
:
DerEd
=
self
.
samplingEngine
.
samples
(
hashesd
)
Gd
=
self
.
HFEngine
.
norm
(
DerEd
)
scaleCoeffs
=
np
.
polyfit
(
np
.
arange
(
len
(
Gd
)),
np
.
log
(
Gd
),
1
)
self
.
scaleFactor
[
d
]
=
np
.
exp
(
-
scaleCoeffs
[
0
]
/
2.
)
def
rescaleByParameter
(
self
,
R
:
Np2D
)
->
Np2D
:
"""
Rescale by scale parameter.
Args:
R: Matrix whose columns need rescaling.
Returns:
Rescaled matrix.
"""
RIdxs
=
nextDerivativeIndices
([],
self
.
npar
,
R
.
shape
[
-
1
])
Rscaled
=
copy
(
R
)
for
j
,
RIdx
in
enumerate
(
RIdxs
):
Rscaled
[
...
,
j
]
*=
np
.
prod
([
x
**
y
for
(
x
,
y
)
in
zip
(
self
.
scaleFactor
,
RIdx
)])
return
Rscaled
def
buildG
(
self
):
"""Assemble Pade' denominator matrix."""
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot compute G matrix."
)
self
.
computeDerivatives
()
if
self
.
verbosity
>=
10
:
verbosityDepth
(
"INIT"
,
"Building gramian matrix."
,
timestamp
=
self
.
timestamp
)
eStart
=
hashD
([
self
.
E
]
+
[
0
]
*
(
self
.
npar
-
1
))
eEnd
=
hashD
([
self
.
E
+
1
]
+
[
0
]
*
(
self
.
npar
-
1
))
eIdxs
=
[
hashI
(
e
,
self
.
npar
)
for
e
in
range
(
eStart
,
eEnd
)]
nEnd
=
hashD
([
self
.
N
+
1
]
+
[
0
]
*
(
self
.
npar
-
1
))
nIdxs
=
nextDerivativeIndices
([],
self
.
npar
,
nEnd
)
self
.
setScaleParameter
()
if
self
.
POD
:
RPODE
=
self
.
rescaleByParameter
(
self
.
samplingEngine
.
RPOD
[:
eEnd
,
:
eEnd
])
else
:
DerE
=
self
.
rescaleByParameter
(
self
.
samplingEngine
.
samples
(
list
(
range
(
eEnd
)))
.
data
)
self
.
G
=
np
.
zeros
((
nEnd
,
nEnd
),
dtype
=
np
.
complex
)
for
eIdx
in
eIdxs
:
nLoc
=
[]
samplesIdxs
=
[]
for
n
,
nIdx
in
enumerate
(
nIdxs
):
diffIdx
=
[
x
-
y
for
(
x
,
y
)
in
zip
(
eIdx
,
nIdx
)]
if
all
([
x
>=
0
for
x
in
diffIdx
]):
nLoc
+=
[
n
]
samplesIdxs
+=
[
hashD
(
diffIdx
)]
if
self
.
POD
:
RPODELoc
=
RPODE
[:
samplesIdxs
[
-
1
]
+
1
,
samplesIdxs
]
GLoc
=
RPODELoc
.
T
.
conj
()
.
dot
(
RPODELoc
)
else
:
DerELoc
=
DerE
[:,
samplesIdxs
]
GLoc
=
self
.
HFEngine
.
innerProduct
(
DerELoc
,
DerELoc
)
for
j
in
range
(
len
(
nLoc
)):
self
.
G
[
nLoc
[
j
],
nLoc
]
=
self
.
G
[
nLoc
[
j
],
nLoc
]
+
GLoc
[
j
]
if
self
.
verbosity
>=
10
:
verbosityDepth
(
"DEL"
,
"Done building gramian."
,
timestamp
=
self
.
timestamp
)
def
findeveVGExplicit
(
self
)
->
Tuple
[
Np1D
,
Np2D
]:
"""
Compute explicitly eigenvalues and eigenvectors of Pade' denominator
matrix.
"""
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot solve eigenvalue problem."
)
self
.
buildG
()
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"INIT"
,
"Solving eigenvalue problem for gramian matrix."
,
timestamp
=
self
.
timestamp
)
ev
,
eV
=
np
.
linalg
.
eigh
(
self
.
G
)
if
self
.
verbosity
>=
5
:
try
:
condev
=
ev
[
-
1
]
/
ev
[
0
]
except
:
condev
=
np
.
inf
verbosityDepth
(
"MAIN"
,
(
"Solved eigenvalue problem of size {} "
"with condition number {:.4e}."
)
.
format
(
self
.
G
.
shape
[
0
],
condev
),
timestamp
=
self
.
timestamp
)
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"DEL"
,
"Done solving eigenvalue problem."
,
timestamp
=
self
.
timestamp
)
return
ev
,
eV
def
findeveVGQR
(
self
)
->
Tuple
[
Np1D
,
Np2D
]:
"""
Compute eigenvalues and eigenvectors of Pade' denominator matrix
through SVD of R factor.
Returns:
Eigenvalues in ascending order and corresponding eigenvector
matrix.
"""
RROMPyAssert
(
self
.
_mode
,
message
=
"Cannot solve eigenvalue problem."
)
RROMPyAssert
(
self
.
POD
,
True
,
"POD value"
)
self
.
computeDerivatives
()
eStart
=
hashD
([
self
.
E
]
+
[
0
]
*
(
self
.
npar
-
1
))
eEnd
=
hashD
([
self
.
E
+
1
]
+
[
0
]
*
(
self
.
npar
-
1
))
eIdxs
=
[
hashI
(
e
,
self
.
npar
)
for
e
in
range
(
eStart
,
eEnd
)]
nEnd
=
hashD
([
self
.
N
+
1
]
+
[
0
]
*
(
self
.
npar
-
1
))
nIdxs
=
nextDerivativeIndices
([],
self
.
npar
,
nEnd
)
self
.
setScaleParameter
()
RPODE
=
self
.
rescaleByParameter
(
self
.
samplingEngine
.
RPOD
[:
eEnd
,
:
eEnd
])
Rstack
=
np
.
zeros
((
RPODE
.
shape
[
0
]
*
(
eEnd
-
eStart
),
nEnd
),
dtype
=
np
.
complex
)
for
k
,
eIdx
in
enumerate
(
eIdxs
):
nLoc
=
[]
samplesIdxs
=
[]
for
n
,
nIdx
in
enumerate
(
nIdxs
):
diffIdx
=
[
x
-
y
for
(
x
,
y
)
in
zip
(
eIdx
,
nIdx
)]
if
all
([
x
>=
0
for
x
in
diffIdx
]):
nLoc
+=
[
n
]
samplesIdxs
+=
[
hashD
(
diffIdx
)]
RPODELoc
=
RPODE
[:,
samplesIdxs
]
for
j
in
range
(
len
(
nLoc
)):
Rstack
[
k
*
RPODE
.
shape
[
0
]
:
(
k
+
1
)
*
RPODE
.
shape
[
0
],
nLoc
[
j
]]
=
RPODELoc
[:,
j
]
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"INIT"
,
(
"Solving svd for square root of "
"gramian matrix."
),
timestamp
=
self
.
timestamp
)
sizeI
=
Rstack
.
shape
_
,
s
,
V
=
np
.
linalg
.
svd
(
Rstack
,
full_matrices
=
False
)
eV
=
V
[::
-
1
,
:]
.
T
.
conj
()
if
self
.
verbosity
>=
5
:
try
:
condev
=
s
[
0
]
/
s
[
-
1
]
except
:
condev
=
np
.
inf
verbosityDepth
(
"MAIN"
,
(
"Solved svd problem of size {} x {} with "
"condition number {:.4e}."
)
.
format
(
*
sizeI
,
condev
),
timestamp
=
self
.
timestamp
)
if
self
.
verbosity
>=
7
:
verbosityDepth
(
"DEL"
,
"Done solving eigenvalue problem."
,
timestamp
=
self
.
timestamp
)
return
s
[::
-
1
],
eV
def
centerNormalize
(
self
,
mu
:
paramList
=
[],
mu0
:
paramVal
=
None
)
->
paramList
:
"""
Compute normalized parameter to be plugged into approximant.
Args:
mu: Parameter(s) 1.
mu0: Parameter(s) 2. If None, set to self.mu0.
Returns:
Normalized parameter.
"""
return
self
.
trainedModel
.
centerNormalize
(
mu
,
mu0
)
def
getResidues
(
self
)
->
sampList
:
"""
Obtain approximant residues.
Returns:
Matrix with residues as columns.
"""
return
self
.
trainedModel
.
getResidues
()
Event Timeline
Log In to Comment