Page MenuHomec4science

generic_pivoted_approximant.py
No OneTemporary

File Metadata

Created
Thu, May 2, 01:34

generic_pivoted_approximant.py

# Copyright (C) 2018 by the RROMPy authors
#
# This file is part of RROMPy.
#
# RROMPy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RROMPy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RROMPy. If not, see <http://www.gnu.org/licenses/>.
#
import numpy as np
from copy import deepcopy as copy
from rrompy.reduction_methods.base.generic_approximant import (
GenericApproximant)
from rrompy.utilities.poly_fitting.polynomial import polybases as ppb
from rrompy.utilities.poly_fitting.radial_basis import polybases as rbpb
from rrompy.utilities.poly_fitting.moving_least_squares import (
polybases as mlspb)
from rrompy.sampling import (SamplingEnginePivoted, SamplingEnginePivotedPOD,
SamplingEnginePivotedPODGlobal)
from rrompy.utilities.base.types import paramList, ListAny
from rrompy.utilities.base import verbosityManager as vbMng
from rrompy.utilities.numerical.degree import reduceDegreeN
from rrompy.utilities.exception_manager import (RROMPyException, RROMPyAssert,
RROMPyWarning)
__all__ = ['GenericPivotedApproximant', 'PODGlobal']
PODGlobal = 2
class GenericPivotedApproximant(GenericApproximant):
"""
ROM pivoted approximant (with pole matching) computation for parametric
problems (ABSTRACT).
Args:
HFEngine: HF problem solver.
mu0(optional): Default parameter. Defaults to 0.
directionPivot(optional): Pivot components. Defaults to [0].
approxParameters(optional): Dictionary containing values for main
parameters of approximant. Recognized keys are:
- 'POD': whether to compute POD of snapshots; defaults to True;
- 'scaleFactorDer': scaling factors for derivative computation;
defaults to 'AUTO';
- 'matchingWeight': weight for pole matching optimization; defaults
to 1;
- 'cutOffTolerance': tolerance for ignoring parasitic poles;
defaults to np.inf;
- 'cutOffKind': kind of cut off strategy; available values
include 'SOFT' and 'HARD'; defaults to 'HARD';
- 'S': total number of pivot samples current approximant relies
upon;
- 'samplerPivot': pivot sample point generator;
- 'SMarginal': total number of marginal samples current approximant
relies upon;
- 'samplerMarginal': marginal sample point generator;
- 'polybasisMarginal': type of polynomial basis for marginal
interpolation; allowed values include 'MONOMIAL', 'CHEBYSHEV'
and 'LEGENDRE'; defaults to 'MONOMIAL';
- 'MMarginal': degree of marginal interpolant; defaults to 'AUTO',
i.e. maximum allowed;
- 'polydegreetypeMarginal': type of polynomial degree for marginal;
defaults to 'TOTAL';
- 'radialDirectionalWeightsMarginal': radial basis weights for
marginal interpolant; defaults to 1;
- 'nNearestNeighborMarginal': number of marginal nearest neighbors
considered if polybasisMarginal allows; defaults to -1;
- 'interpRcondMarginal': tolerance for marginal interpolation;
defaults to None.
Defaults to empty dict.
approx_state(optional): Whether to approximate state. Defaults to
False.
verbosity(optional): Verbosity level. Defaults to 10.
Attributes:
HFEngine: HF problem solver.
mu0: Default parameter.
directionPivot: Pivot components.
mus: Array of snapshot parameters.
musMarginal: Array of marginal snapshot parameters.
approxParameters: Dictionary containing values for main parameters of
approximant. Recognized keys are in parameterList.
parameterListSoft: Recognized keys of soft approximant parameters:
- 'POD': whether to compute POD of snapshots;
- 'scaleFactorDer': scaling factors for derivative computation;
- 'matchingWeight': weight for pole matching optimization;
- 'cutOffTolerance': tolerance for ignoring parasitic poles;
- 'cutOffKind': kind of cut off strategy;
- 'polybasisMarginal': type of polynomial basis for marginal
interpolation;
- 'MMarginal': degree of marginal interpolant;
- 'polydegreetypeMarginal': type of polynomial degree for marginal;
- 'radialDirectionalWeightsMarginal': radial basis weights for
marginal interpolant;
- 'nNearestNeighborMarginal': number of marginal nearest neighbors
considered if polybasisMarginal allows;
- 'interpRcondMarginal': tolerance for marginal interpolation.
parameterListCritical: Recognized keys of critical approximant
parameters:
- 'S': total number of pivot samples current approximant relies
upon;
- 'samplerPivot': pivot sample point generator;
- 'SMarginal': total number of marginal samples current approximant
relies upon;
- 'samplerMarginal': marginal sample point generator.
approx_state: Whether to approximate state.
verbosity: Verbosity level.
POD: Whether to compute POD of snapshots.
scaleFactorDer: Scaling factors for derivative computation.
matchingWeight: Weight for pole matching optimization.
cutOffTolerance: Tolerance for ignoring parasitic poles.
cutOffKind: Kind of cut off strategy.
S: Total number of pivot samples current approximant relies upon.
samplerPivot: Pivot sample point generator.
SMarginal: Total number of marginal samples current approximant relies
upon.
samplerMarginal: Marginal sample point generator.
polybasisMarginal: Type of polynomial basis for marginal interpolation.
MMarginal: Degree of marginal interpolant.
polydegreetypeMarginal: Type of polynomial degree for marginal.
radialDirectionalWeightsMarginal: Radial basis weights for marginal
interpolant.
nNearestNeighborMarginal: Number of marginal nearest neighbors
considered if polybasisMarginal allows.
interpRcondMarginal: Tolerance for marginal interpolation.
muBounds: list of bounds for pivot parameter values.
muBoundsMarginal: list of bounds for marginal parameter values.
samplingEngine: Sampling engine.
uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as
sampleList.
lastSolvedHF: Parameter(s) corresponding to last computed high fidelity
solution(s) as parameterList.
uApproxReduced: Reduced approximate solution(s) with parameter(s)
lastSolvedApprox as sampleList.
lastSolvedApproxReduced: Parameter(s) corresponding to last computed
reduced approximate solution(s) as parameterList.
uApprox: Approximate solution(s) with parameter(s) lastSolvedApprox as
sampleList.
lastSolvedApprox: Parameter(s) corresponding to last computed
approximate solution(s) as parameterList.
"""
def __init__(self, directionPivot:ListAny, *args, **kwargs):
self._preInit()
if len(directionPivot) > 1:
raise RROMPyException(("Exactly 1 pivot parameter allowed in pole "
"matching."))
from rrompy.parameter.parameter_sampling import QuadratureSampler as QS
QSBase = QS([[0], [1]], "UNIFORM")
self._addParametersToList(["matchingWeight", "cutOffTolerance",
"cutOffKind", "polybasisMarginal",
"MMarginal", "polydegreetypeMarginal",
"radialDirectionalWeightsMarginal",
"nNearestNeighborMarginal",
"interpRcondMarginal"],
[1, np.inf, "HARD", "MONOMIAL", "AUTO",
"TOTAL", [1], -1, -1], ["samplerPivot",
"SMarginal", "samplerMarginal"],
[QSBase, [1], QSBase])
del QS
self._directionPivot = directionPivot
super().__init__(*args, **kwargs)
self._postInit()
@property
def tModelType(self):
from .trained_model.trained_model_pivoted import TrainedModelPivoted
return TrainedModelPivoted
def setupSampling(self):
"""Setup sampling engine."""
RROMPyAssert(self._mode, message = "Cannot setup sampling engine.")
if not hasattr(self, "_POD") or self._POD is None: return
if self.POD:
if self.POD == PODGlobal:
SamplingEngine = SamplingEnginePivotedPODGlobal
else:
SamplingEngine = SamplingEnginePivotedPOD
else:
SamplingEngine = SamplingEnginePivoted
self.samplingEngine = SamplingEngine(self.HFEngine,
self.directionPivot,
sample_state = self.approx_state,
verbosity = self.verbosity)
def initializeModelData(self, datadict):
if "directionPivot" in datadict.keys():
from .trained_model.trained_model_pivoted_data import (
TrainedModelPivotedData)
return (TrainedModelPivotedData(datadict["mu0"],
datadict.pop("projMat"),
datadict["scaleFactor"],
datadict.pop("rescalingExp"),
datadict["directionPivot"]),
["mu0", "scaleFactor", "directionPivot", "mus"])
else:
return super().initializeModelData(datadict)
@property
def npar(self):
"""Number of parameters."""
if hasattr(self, "_temporaryPivot"): return self.nparPivot
return super().npar
@property
def mus(self):
"""Value of mus. Its assignment may reset snapshots."""
return self._mus
@mus.setter
def mus(self, mus):
musOld = copy(self.mus) if hasattr(self, '_mus') else None
if (musOld is None or len(mus) != len(musOld) or not mus == musOld):
self.resetSamples()
self._mus = mus
@property
def matchingWeight(self):
"""Value of matchingWeight."""
return self._matchingWeight
@matchingWeight.setter
def matchingWeight(self, matchingWeight):
self._matchingWeight = matchingWeight
self._approxParameters["matchingWeight"] = self.matchingWeight
@property
def cutOffTolerance(self):
"""Value of cutOffTolerance."""
return self._cutOffTolerance
@cutOffTolerance.setter
def cutOffTolerance(self, cutOffTolerance):
self._cutOffTolerance = cutOffTolerance
self._approxParameters["cutOffTolerance"] = self.cutOffTolerance
@property
def cutOffKind(self):
"""Value of cutOffKind."""
return self._cutOffKind
@cutOffKind.setter
def cutOffKind(self, cutOffKind):
cutOffKind = cutOffKind.upper()
if cutOffKind not in ["SOFT", "HARD"]:
RROMPyWarning(("Cut off kind not recognized. Overriding to "
"'HARD'."))
cutOffKind = "HARD"
self._cutOffKind = cutOffKind
self._approxParameters["cutOffKind"] = self.cutOffKind
@property
def SMarginal(self):
"""Value of SMarginal."""
return self._SMarginal
@SMarginal.setter
def SMarginal(self, SMarginal):
if SMarginal <= 0:
raise RROMPyException("SMarginal must be positive.")
if hasattr(self, "_SMarginal") and self._SMarginal is not None:
Sold = self.SMarginal
else: Sold = -1
self._SMarginal = SMarginal
self._approxParameters["SMarginal"] = self.SMarginal
if Sold != self.SMarginal: self.resetSamples()
@property
def polybasisMarginal(self):
"""Value of polybasisMarginal."""
return self._polybasisMarginal
@polybasisMarginal.setter
def polybasisMarginal(self, polybasisMarginal):
try:
polybasisMarginal = polybasisMarginal.upper().strip().replace(" ",
"")
if polybasisMarginal not in ppb + rbpb + mlspb:
raise RROMPyException(
"Prescribed marginal polybasis not recognized.")
self._polybasisMarginal = polybasisMarginal
except:
RROMPyWarning(("Prescribed marginal polybasis not recognized. "
"Overriding to 'MONOMIAL'."))
self._polybasisMarginal = "MONOMIAL"
self._approxParameters["polybasisMarginal"] = self.polybasisMarginal
@property
def MMarginal(self):
"""Value of MMarginal."""
return self._MMarginal
@MMarginal.setter
def MMarginal(self, MMarginal):
if isinstance(MMarginal, str):
MMarginal = MMarginal.strip().replace(" ","")
if "-" not in MMarginal: MMarginal = MMarginal + "-0"
self._MMarginal_isauto = True
self._MMarginal_shift = int(MMarginal.split("-")[-1])
MMarginal = 0
if MMarginal < 0:
raise RROMPyException("MMarginal must be non-negative.")
self._MMarginal = MMarginal
self._approxParameters["MMarginal"] = self.MMarginal
def _setMMarginalAuto(self):
self.MMarginal = max(0, reduceDegreeN(
len(self.musMarginal), len(self.musMarginal),
self.nparMarginal, self.polydegreetypeMarginal
) - self._MMarginal_shift)
vbMng(self, "MAIN", ("Automatically setting MMarginal to "
"{}.").format(self.MMarginal), 25)
@property
def polydegreetypeMarginal(self):
"""Value of polydegreetypeMarginal."""
return self._polydegreetypeMarginal
@polydegreetypeMarginal.setter
def polydegreetypeMarginal(self, polydegreetypeM):
try:
polydegreetypeM = polydegreetypeM.upper().strip().replace(" ","")
if polydegreetypeM not in ["TOTAL", "FULL"]:
raise RROMPyException(("Prescribed polydegreetypeMarginal not "
"recognized."))
self._polydegreetypeMarginal = polydegreetypeM
except:
RROMPyWarning(("Prescribed polydegreetypeMarginal not recognized. "
"Overriding to 'TOTAL'."))
self._polydegreetypeMarginal = "TOTAL"
self._approxParameters["polydegreetypeMarginal"] = (
self.polydegreetypeMarginal)
@property
def radialDirectionalWeightsMarginal(self):
"""Value of radialDirectionalWeightsMarginal."""
return self._radialDirectionalWeightsMarginal
@radialDirectionalWeightsMarginal.setter
def radialDirectionalWeightsMarginal(self, radialDirWeightsMarginal):
if not hasattr(radialDirWeightsMarginal, "__len__"):
radialDirWeightsMarginal = [radialDirWeightsMarginal]
self._radialDirectionalWeightsMarginal = radialDirWeightsMarginal
self._approxParameters["radialDirectionalWeightsMarginal"] = (
self.radialDirectionalWeightsMarginal)
@property
def nNearestNeighborMarginal(self):
"""Value of nNearestNeighborMarginal."""
return self._nNearestNeighborMarginal
@nNearestNeighborMarginal.setter
def nNearestNeighborMarginal(self, nNearestNeighborMarginal):
self._nNearestNeighborMarginal = nNearestNeighborMarginal
self._approxParameters["nNearestNeighborMarginal"] = (
self.nNearestNeighborMarginal)
@property
def interpRcondMarginal(self):
"""Value of interpRcondMarginal."""
return self._interpRcondMarginal
@interpRcondMarginal.setter
def interpRcondMarginal(self, interpRcondMarginal):
self._interpRcondMarginal = interpRcondMarginal
self._approxParameters["interpRcondMarginal"] = (
self.interpRcondMarginal)
@property
def directionPivot(self):
"""Value of directionPivot. Its assignment may reset snapshots."""
return self._directionPivot
@directionPivot.setter
def directionPivot(self, directionPivot):
if hasattr(self, '_directionPivot'):
directionPivotOld = copy(self.directionPivot)
else:
directionPivotOld = None
if (directionPivotOld is None
or len(directionPivot) != len(directionPivotOld)
or not directionPivot == directionPivotOld):
self.resetSamples()
self._directionPivot = directionPivot
@property
def directionMarginal(self):
return [x for x in range(self.HFEngine.npar) \
if x not in self.directionPivot]
@property
def nparPivot(self):
return len(self.directionPivot)
@property
def nparMarginal(self):
return self.npar - self.nparPivot
@property
def rescalingExpPivot(self):
return [self.HFEngine.rescalingExp[x] for x in self.directionPivot]
@property
def rescalingExpMarginal(self):
return [self.HFEngine.rescalingExp[x] for x in self.directionMarginal]
@property
def muBounds(self):
"""Value of muBounds."""
return self.samplerPivot.lims
@property
def muBoundsMarginal(self):
"""Value of muBoundsMarginal."""
return self.samplerMarginal.lims
@property
def samplerPivot(self):
"""Value of samplerPivot."""
return self._samplerPivot
@samplerPivot.setter
def samplerPivot(self, samplerPivot):
if 'generatePoints' not in dir(samplerPivot):
raise RROMPyException("Pivot sampler type not recognized.")
if hasattr(self, '_samplerPivot') and self._samplerPivot is not None:
samplerOld = self.samplerPivot
self._samplerPivot = samplerPivot
self._approxParameters["samplerPivot"] = self.samplerPivot.__str__()
if not 'samplerOld' in locals() or samplerOld != self.samplerPivot:
self.resetSamples()
@property
def samplerMarginal(self):
"""Value of samplerMarginal."""
return self._samplerMarginal
@samplerMarginal.setter
def samplerMarginal(self, samplerMarginal):
if 'generatePoints' not in dir(samplerMarginal):
raise RROMPyException("Marginal sampler type not recognized.")
if (hasattr(self, '_samplerMarginal')
and self._samplerMarginal is not None):
samplerOld = self.samplerMarginal
self._samplerMarginal = samplerMarginal
self._approxParameters["samplerMarginal"] = (
self.samplerMarginal.__str__())
if not 'samplerOld' in locals() or samplerOld != self.samplerMarginal:
self.resetSamples()
def setSamples(self, samplingEngine):
"""Copy samplingEngine and samples."""
self.mus = copy(samplingEngine.mus[0])
for sEj in samplingEngine.mus[1:]:
self.mus.append(sEj)
super().setSamples(samplingEngine)
def _finalizeMarginalization(self):
vbMng(self, "INIT", "Recompressing by cut off.", 10)
msg = self.trainedModel.recompressByCutOff(
self.cutOffTolerance, self.cutOffKind,
self.samplerPivot.normalFoci(),
self.samplerPivot.groundPotential())
vbMng(self, "DEL", "Done recompressing." + msg, 10)
interpPars = [self.verbosity >= 5,
self.polydegreetypeMarginal == "TOTAL", {}]
if self.polybasisMarginal not in ppb:
interpPars[-1]["nNearestNeighbor"] = self.nNearestNeighborMarginal
if self.polybasisMarginal in ppb + rbpb:
interpPars += [{"rcond": self.interpRcondMarginal}]
self.trainedModel.setupMarginalInterp(self, interpPars,
hasattr(self, "_MMarginal_isauto"),
self.radialDirectionalWeightsMarginal,
hasattr(self, "_reduceDegreeNNoWarn"))
self.trainedModel.data.approxParameters = copy(self.approxParameters)
def computeScaleFactor(self):
"""Compute parameter rescaling factor."""
RROMPyAssert(self._mode, message = "Cannot compute rescaling factor.")
self.scaleFactorPivot = .5 * np.abs(
self.muBounds[0] ** self.rescalingExpPivot
- self.muBounds[1] ** self.rescalingExpPivot)
self.scaleFactorMarginal = .5 * np.abs(
self.muBoundsMarginal[0] ** self.rescalingExpMarginal
- self.muBoundsMarginal[1] ** self.rescalingExpMarginal)
self.scaleFactor = np.empty(self.npar)
self.scaleFactor[self.directionPivot] = self.scaleFactorPivot
self.scaleFactor[self.directionMarginal] = self.scaleFactorMarginal
def normApprox(self, mu:paramList) -> float:
_PODOld = self.POD
self._POD = self.POD == PODGlobal
result = super().normApprox(mu)
self._POD = _PODOld
return result

Event Timeline