Page MenuHomec4science

fprism.c
No OneTemporary

File Metadata

Created
Fri, May 10, 12:05

fprism.c

#ifndef lint
static const char RCSid[] = "$Id: fprism.c,v 2.10 2014/07/08 18:25:00 greg Exp $";
#endif
/* Ce programme calcule les directions et les energies des rayons lumineux
resultant du passage d'un rayon au travers d'un vitrage prismatique
1991, LESO - EPFL, R. Compagnon - F. Di Pasquale */
#include "standard.h"
#include "ray.h"
#include "calcomp.h"
#include "func.h"
#ifdef NOSTRUCTASSIGN
static double err = "No structure assignment!"; /* generate compiler error */
#endif
static double
Sqrt(
double x
)
{
if (x < 0.)
return(0.);
return(sqrt(x));
}
/* definitions de macros utiles */
#define ALPHA 0
#define BETA 1
#define GAMMA 2
#define DELTA 3
#define AUCUNE 4
#define X(r) r.v[0]
#define Y(r) r.v[1]
#define Z(r) r.v[2]
#define XX(v) v[0]
#define YY(v) v[1]
#define ZZ(v) v[2]
#define alpha_beta(v_alpha,v_beta) tfm(matbt,v_alpha,v_beta)
#define beta_alpha(v_beta,v_alpha) tfm(matb,v_beta,v_alpha)
#define alpha_gamma(v_alpha,v_gamma) tfm(matct,v_alpha,v_gamma)
#define gamma_alpha(v_gamma,v_alpha) tfm(matc,v_gamma,v_alpha)
#define prob_alpha_gamma(r) (1.-prob_alpha_beta(r))
#define prob_beta_gamma(r) (1.-prob_beta_alpha(r))
#define prob_gamma_beta(r) (1.-prob_gamma_alpha(r))
#define prob_delta_gamma(r) (1.-prob_delta_beta(r))
#define prob_beta_delta(r) (prob_beta_alpha(r))
#define prob_gamma_delta(r) (prob_gamma_alpha(r))
#define prob_delta_beta(r) (prob_alpha_beta(r))
/* Definitions des types de donnees */
typedef struct { FVECT v; /* direction */
double ppar1,pper1,
ppar2,pper2; /* polarisations */
double e; /* energie */
double n; /* milieu dans lequel on se propage */
int orig,dest; /* origine et destination */
} TRAYON;
typedef struct { double a,b,c,d; /* longueurs caracteristiques */
double np; /* indice de refraction */
} TPRISM;
/* Definitions des variables globales */
static TPRISM prism; /* le prisme ! */
static MAT4 matb = MAT4IDENT; /* matrices de changement de bases */
static MAT4 matbt = MAT4IDENT;
static MAT4 matc = MAT4IDENT;
static MAT4 matct = MAT4IDENT;
static double seuil; /* seuil pour l'arret du trace */
static double sinus,cosinus; /* sin et cos */
static double rapport; /* rapport entre les indices des
milieux refracteur et incident */
static int tot_ref; /* flag pour les surfaces
reflechissantes */
static double fact_ref[4]={1.0,1.0,1.0,1.0}; /* facteurs de reflexion */
static double tolerance; /* degre de tol. pour les amalgames */
static double tolsource; /* degre de tol. pour les sources */
static int bidon;
#define BADVAL (-10)
static long prismclock = -1;
static int nosource; /* indique que l'on ne trace pas
en direction d'une source */
static int sens; /* indique le sens de prop. du ray.*/
static int nbrayons; /* indice des rayons sortants */
static TRAYON *ray; /* tableau des rayons sortants */
static TRAYON *raytemp; /* variable temporaire */
static void prepare_matrices(void);
static void tfm(MAT4 mat, FVECT v_old, FVECT v_new);
static double prob_alpha_beta(TRAYON r);
static double prob_beta_alpha(TRAYON r);
static double prob_gamma_alpha(TRAYON r);
static void v_par(FVECT v, FVECT v_out);
static void v_per(FVECT v, FVECT v_out);
static TRAYON transalphabeta(TRAYON r_initial);
static TRAYON transbetaalpha(TRAYON r_initial);
static TRAYON transalphagamma(TRAYON r_initial);
static TRAYON transgammaalpha(TRAYON r_initial);
static int compare(TRAYON r1, TRAYON r2, double marge);
static void sortie(TRAYON r);
static void trigo(TRAYON r);
static TRAYON reflexion(TRAYON r_incident);
static TRAYON transmission(TRAYON r_incident);
static void trace_rayon(TRAYON r_incident);
static void inverser(TRAYON *r1, TRAYON *r2);
static void setprism(void);
static double l_get_val(char *nm);
/* Definition des routines */
#define term(a,b) a/Sqrt(a*a+b*b)
static void
prepare_matrices(void)
{
/* preparation des matrices de changement de bases */
matb[0][0] = matbt[0][0] = matb[1][1] = matbt[1][1] = term(prism.a,prism.d);
matb[1][0] = matbt[0][1] = term(-prism.d,prism.a);
matb[0][1] = matbt[1][0] = term(prism.d,prism.a);
matc[0][0] = matct[0][0] = matc[1][1] = matct[1][1] = term(prism.b,prism.d);
matc[1][0] = matct[0][1] = term(prism.d,prism.b);
matc[0][1] = matct[1][0] = term(-prism.d,prism.b);
return;
}
#undef term
static void
tfm(
MAT4 mat,
FVECT v_old,
FVECT v_new
)
{
/* passage d'un repere old au repere new par la matrice mat */
FVECT v_temp;
multv3(v_temp,v_old,mat);
normalize(v_temp);
VCOPY(v_new,v_temp);
return;
}
#define A prism.a
#define B prism.b
#define C prism.c
#define D prism.d
static double
prob_alpha_beta(
TRAYON r
)
{
/* calcul de la probabilite de passage de alpha a beta */
double prob,test;
if ( X(r) != 0. )
{
test = Y(r)/X(r);
if ( test > B/D ) prob = 1.;
else if ( test >= -A/D ) prob = (A+test*D)/(A+B);
else prob = 0.;
}
else prob = 0.;
return prob;
}
static double
prob_beta_alpha(
TRAYON r
)
{
/* calcul de la probabilite de passage de beta a aplha */
double prob,test;
if ( X(r) != 0. )
{
test = Y(r)/X(r);
if ( test > B/D ) prob = (A+B)/(A+test*D);
else if ( test >= -A/D ) prob = 1.;
else prob = 0.;
}
else prob = 0.;
return prob;
}
static double
prob_gamma_alpha(
TRAYON r
)
{
/* calcul de la probabilite de passage de gamma a alpha */
double prob,test;
if ( X(r) != 0. )
{
test = Y(r)/X(r);
if ( test > B/D ) prob = 0.;
else if ( test >= -A/D ) prob = 1.;
else prob = (A+B)/(B-test*D);
}
else prob = 0.;
return prob;
}
#undef A
#undef B
#undef C
#undef D
static void
v_par(
FVECT v,
FVECT v_out
)
/* calcule le vecteur par au plan d'incidence lie a v */
{
FVECT v_temp;
double det;
det = Sqrt( (YY(v)*YY(v)+ZZ(v)*ZZ(v))*(YY(v)*YY(v)+ZZ(v)*ZZ(v))+
(XX(v)*XX(v)*YY(v)*YY(v))+(XX(v)*XX(v)*ZZ(v)*ZZ(v)) );
XX(v_temp) = (YY(v)*YY(v)+ZZ(v)*ZZ(v))/det;
YY(v_temp) = -( XX(v)*YY(v) )/det;
ZZ(v_temp) = -( XX(v)*ZZ(v) )/det;
VCOPY(v_out,v_temp);
return;
}
static void
v_per(
FVECT v,
FVECT v_out
)
/* calcule le vecteur perp au plan d'incidence lie a v */
{
FVECT v_temp;
double det;
det = Sqrt( (ZZ(v)*ZZ(v)+YY(v)*YY(v)) );
XX(v_temp) = 0.;
YY(v_temp) = -ZZ(v)/det;
ZZ(v_temp) = YY(v)/det;
VCOPY(v_out,v_temp);
return;
}
static TRAYON
transalphabeta(
TRAYON r_initial
)
/* transforme le rayon r_initial de la base associee a alpha dans
la base associee a beta */
{
TRAYON r_final;
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2;
r_final = r_initial;
alpha_beta(r_initial.v,r_final.v);
if ((Y(r_initial) != 0. || Z(r_initial) != 0.)&&(Y(r_final) !=0. || Z(r_final)!= 0.))
{
v_par(r_initial.v,vpar_temp1);
alpha_beta(vpar_temp1,vpar_temp1);
v_per(r_initial.v,vper_temp1);
alpha_beta(vper_temp1,vper_temp1);
v_par(r_final.v,vpar_temp2);
v_per(r_final.v,vper_temp2);
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper1*fdot(vper_temp1,vpar_temp2));
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper1*fdot(vper_temp1,vper_temp2));
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper2*fdot(vper_temp1,vpar_temp2));
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper2*fdot(vper_temp1,vper_temp2));
}
return r_final;
}
static TRAYON
transbetaalpha(
TRAYON r_initial
)
{
/* transforme le rayon r_initial de la base associee a beta dans
la base associee a alpha */
TRAYON r_final;
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2;
r_final = r_initial;
beta_alpha(r_initial.v,r_final.v);
if ((Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final) != 0. || Z(r_final)!= 0.))
{
v_par(r_initial.v,vpar_temp1);
beta_alpha(vpar_temp1,vpar_temp1);
v_per(r_initial.v,vper_temp1);
beta_alpha(vper_temp1,vper_temp1);
v_par(r_final.v,vpar_temp2);
v_per(r_final.v,vper_temp2);
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper1*fdot(vper_temp1,vpar_temp2));
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper1*fdot(vper_temp1,vper_temp2));
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper2*fdot(vper_temp1,vpar_temp2));
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper2*fdot(vper_temp1,vper_temp2));
}
return r_final;
}
static TRAYON
transalphagamma(
TRAYON r_initial
)
/* transforme le rayon r_initial de la base associee a alpha dans
la base associee a gamma */
{
TRAYON r_final;
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2;
r_final = r_initial;
alpha_gamma(r_initial.v,r_final.v);
if (( Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final)!= 0. || Z(r_final) !=0.))
{
v_par(r_initial.v,vpar_temp1);
alpha_gamma(vpar_temp1,vpar_temp1);
v_per(r_initial.v,vper_temp1);
alpha_gamma(vper_temp1,vper_temp1);
v_par(r_final.v,vpar_temp2);
v_per(r_final.v,vper_temp2);
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper1*fdot(vper_temp1,vpar_temp2));
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper1*fdot(vper_temp1,vper_temp2));
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper2*fdot(vper_temp1,vpar_temp2));
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper2*fdot(vper_temp1,vper_temp2));
}
return r_final;
}
static TRAYON
transgammaalpha(
TRAYON r_initial
)
/* transforme le rayon r_initial de la base associee a gamma dans
la base associee a alpha */
{
TRAYON r_final;
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2;
r_final = r_initial;
gamma_alpha(r_initial.v,r_final.v);
if (( Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final) !=0. || Z(r_final) != 0.))
{
v_par(r_initial.v,vpar_temp1);
gamma_alpha(vpar_temp1,vpar_temp1);
v_per(r_initial.v,vper_temp1);
gamma_alpha(vper_temp1,vper_temp1);
v_par(r_final.v,vpar_temp2);
v_per(r_final.v,vper_temp2);
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper1*fdot(vper_temp1,vpar_temp2));
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper1*fdot(vper_temp1,vper_temp2));
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+
(r_initial.pper2*fdot(vper_temp1,vpar_temp2));
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+
(r_initial.pper2*fdot(vper_temp1,vper_temp2));
}
return r_final;
}
static int
compare(
TRAYON r1,
TRAYON r2,
double marge
)
{
double arctg1, arctg2;
arctg1 = atan2(Y(r1),X(r1));
arctg2 = atan2(Y(r2),X(r2));
if ((arctg1 - marge <= arctg2) && (arctg1 + marge >= arctg2)) return 1;
else return 0;
}
static void
sortie(
TRAYON r
)
{
int i = 0;
int egalite = 0;
if(r.e > seuil)
{
while (i < nbrayons && egalite == 0)
{
raytemp = &ray[i];
egalite = compare(r,*raytemp,tolerance);
if (egalite) raytemp->e = raytemp->e + r.e;
else i = i + 1;
}
if (egalite == 0)
{
if (nbrayons == 0) ray = (TRAYON *)calloc(1,sizeof(TRAYON));
else ray = (TRAYON *)realloc((void *)ray, (nbrayons+1)*(sizeof(TRAYON)));
if (ray == NULL)
error(SYSTEM, "out of memory in sortie\n");
raytemp = &ray[nbrayons];
raytemp->v[0] = X(r);
raytemp->v[1] = Y(r);
raytemp->v[2] = Z(r);
raytemp->e = r.e;
nbrayons++;
}
}
return;
}
static void
trigo(
TRAYON r
)
/* calcule les grandeurs trigonometriques relatives au rayon incident
et le rapport entre les indices du milieu refracteur et incident */
{
double det;
det = Sqrt(X(r)*X(r)+Y(r)*Y(r)+Z(r)*Z(r));
sinus = Sqrt(Y(r)*Y(r)+Z(r)*Z(r))/det;
cosinus = Sqrt(X(r)*X(r))/det;
if (r.n == 1.) rapport = prism.np * prism.np;
else rapport = 1./(prism.np * prism.np);
return;
}
static TRAYON
reflexion(
TRAYON r_incident
)
{
/* calcul du rayon reflechi par une face */
TRAYON r_reflechi;
r_reflechi = r_incident;
trigo(r_incident);
X(r_reflechi) = -X(r_incident);
Y(r_reflechi) = Y(r_incident);
Z(r_reflechi) = Z(r_incident);
if(sinus > Sqrt(rapport) || r_incident.dest == tot_ref)
{
r_reflechi.ppar1 = r_incident.ppar1;
r_reflechi.pper1 = r_incident.pper1;
r_reflechi.ppar2 = r_incident.ppar2;
r_reflechi.pper2 = r_incident.pper2;
r_reflechi.e = r_incident.e * fact_ref[r_incident.dest];
}
else
{
r_reflechi.ppar1 = r_incident.ppar1*(rapport*cosinus-Sqrt(rapport-
(sinus*sinus)))/(rapport*cosinus+Sqrt(rapport-(sinus*sinus)));
r_reflechi.pper1 = r_incident.pper1*(cosinus-Sqrt
(rapport-(sinus*sinus)))/(cosinus+Sqrt(rapport-(sinus*sinus)));
r_reflechi.ppar2 = r_incident.ppar2*(rapport*cosinus-Sqrt(rapport-
(sinus*sinus)))/(rapport*cosinus+Sqrt(rapport-(sinus*sinus)));
r_reflechi.pper2 = r_incident.pper2*(cosinus-Sqrt
(rapport-(sinus*sinus)))/(cosinus+Sqrt(rapport-(sinus*sinus)));
r_reflechi.e = r_incident.e *(((r_reflechi.ppar1*r_reflechi.ppar1+
r_reflechi.pper1*r_reflechi.pper1)/(r_incident.ppar1*r_incident.ppar1+
r_incident.pper1*r_incident.pper1))+((r_reflechi.ppar2*r_reflechi.ppar2
+r_reflechi.pper2*r_reflechi.pper2)/(r_incident.ppar2*r_incident.ppar2
+r_incident.pper2*r_incident.pper2)))/2;
}
/* a la sortie de cette routine r_transmis.orig et .dest ne sont pas definis!*/
return r_reflechi;
}
static TRAYON
transmission(
TRAYON r_incident
)
{
/* calcul du rayon refracte par une face */
TRAYON r_transmis;
r_transmis = r_incident;
trigo(r_incident);
if (sinus <= Sqrt(rapport) && r_incident.dest != tot_ref)
{
X(r_transmis) = (X(r_incident)/(fabs(X(r_incident))))*
(Sqrt(1.-(Y(r_incident)*Y(r_incident)+Z(r_incident)*
Z(r_incident))/rapport));
Y(r_transmis) = Y(r_incident)/Sqrt(rapport);
Z(r_transmis) = Z(r_incident)/Sqrt(rapport);
r_transmis.ppar1 = r_incident.ppar1*2.*Sqrt(rapport)*cosinus/
(Sqrt(rapport-sinus*sinus)+rapport*cosinus);
r_transmis.pper1 = r_incident.pper1*2.*cosinus/(cosinus+Sqrt(rapport
- sinus*sinus));
r_transmis.ppar2 = r_incident.ppar2*2.*Sqrt(rapport)*cosinus/
(Sqrt(rapport-sinus*sinus)+rapport*cosinus);
r_transmis.pper2 = r_incident.pper2*2.*cosinus/(cosinus+Sqrt(rapport
- sinus*sinus));
r_transmis.e = (r_incident.e/2)*(Sqrt(rapport-sinus*sinus)/cosinus)
*(((r_transmis.ppar1*r_transmis.ppar1+r_transmis.pper1*
r_transmis.pper1)
/(r_incident.ppar1*r_incident.ppar1+r_incident.pper1*
r_incident.pper1))+
((r_transmis.ppar2*r_transmis.ppar2+r_transmis.pper2*r_transmis.pper2)
/(r_incident.ppar2*r_incident.ppar2+r_incident.pper2*r_incident.pper2)));
if(r_incident.n == 1.) r_transmis.n = prism.np;
else r_transmis.n = 1.;
}
else r_transmis.e = 0.;
/* a la sortie de cette routine r_transmis.orig et .dest ne sont pas definis!*/
return r_transmis;
}
#define ensuite(rayon,prob_passage,destination) r_suite = rayon; \
r_suite.e = prob_passage(rayon)*rayon.e; \
r_suite.dest = destination; \
if ( r_suite.e > seuil ) trace_rayon(r_suite)
static void
trace_rayon(
TRAYON r_incident
)
{
/* trace le rayon donne */
TRAYON r_reflechi,r_transmis,r_suite;
switch (r_incident.dest)
{
case ALPHA:
if ( r_incident.orig == ALPHA )
{
r_reflechi = reflexion(r_incident);
sortie(r_reflechi);
r_transmis = transmission(r_incident);
r_transmis.orig = ALPHA;
ensuite(r_transmis,prob_alpha_beta,BETA);
ensuite(r_transmis,prob_alpha_gamma,GAMMA);
}
else
{
r_reflechi = reflexion(r_incident);
r_reflechi.orig = ALPHA;
ensuite(r_reflechi,prob_alpha_beta,BETA);
ensuite(r_reflechi,prob_alpha_gamma,GAMMA);
r_transmis = transmission(r_incident);
sortie(r_transmis);
}
break;
case BETA:
r_reflechi = transbetaalpha(reflexion(transalphabeta(r_incident)));
r_reflechi.orig = BETA;
r_transmis = transbetaalpha(transmission(transalphabeta
(r_incident)));
r_transmis.orig = GAMMA;
if ( r_incident.n > 1.0 ) /* le rayon vient de l'interieur */
{
ensuite(r_reflechi,prob_beta_alpha,ALPHA);
ensuite(r_reflechi,prob_beta_gamma,GAMMA);
ensuite(r_transmis,prob_beta_gamma,GAMMA);
ensuite(r_transmis,prob_beta_delta,DELTA);
}
else /* le rayon vient de l'exterieur */
{
ensuite(r_reflechi,prob_beta_gamma,GAMMA);
ensuite(r_reflechi,prob_beta_delta,DELTA);
ensuite(r_transmis,prob_beta_alpha,ALPHA);
ensuite(r_transmis,prob_beta_gamma,GAMMA);
}
break;
case GAMMA:
r_reflechi = transgammaalpha(reflexion(transalphagamma(r_incident)));
r_reflechi.orig = GAMMA;
r_transmis = transgammaalpha(transmission(transalphagamma
(r_incident)));
r_transmis.orig = GAMMA;
if ( r_incident.n > 1.0 ) /* le rayon vient de l'interieur */
{
ensuite(r_reflechi,prob_gamma_alpha,ALPHA);
ensuite(r_reflechi,prob_gamma_beta,BETA);
ensuite(r_transmis,prob_gamma_beta,BETA);
ensuite(r_transmis,prob_gamma_delta,DELTA);
}
else /* le rayon vient de l'exterieur */
{
ensuite(r_reflechi,prob_gamma_beta,BETA);
ensuite(r_reflechi,prob_gamma_delta,DELTA);
ensuite(r_transmis,prob_gamma_alpha,ALPHA);
ensuite(r_transmis,prob_gamma_beta,BETA);
}
break;
case DELTA:
if ( r_incident.orig != DELTA ) sortie(r_incident);
else
{
ensuite(r_incident,prob_delta_beta,BETA);
ensuite(r_incident,prob_delta_gamma,GAMMA);
}
break;
}
return;
}
#undef ensuite
static void
inverser(
TRAYON *r1,
TRAYON *r2
)
{
TRAYON temp;
temp = *r1;
*r1 = *r2;
*r2 = temp;
}
static void
setprism(void)
{
double d;
TRAYON r_initial,rsource;
int i,j;
prismclock = eclock;
r_initial.ppar1 = r_initial.pper2 = 1.;
r_initial.pper1 = r_initial.ppar2 = 0.;
d = 1; prism.a = funvalue("arg", 1, &d);
if(prism.a < 0.) goto badopt;
d = 2; prism.b = funvalue("arg", 1, &d);
if(prism.b < 0.) goto badopt;
d = 3; prism.c = funvalue("arg", 1, &d);
if(prism.c < 0.) goto badopt;
d = 4; prism.d = funvalue("arg", 1, &d);
if(prism.d < 0.) goto badopt;
d = 5; prism.np = funvalue("arg", 1, &d);
if(prism.np < 1.) goto badopt;
d = 6; seuil = funvalue("arg", 1, &d);
if (seuil < 0. || seuil >=1) goto badopt;
d = 7; tot_ref = (int)(funvalue("arg", 1, &d) + .5);
if (tot_ref != 1 && tot_ref != 2 && tot_ref != 4) goto badopt;
if (tot_ref < 4 )
{
d = 8; fact_ref[tot_ref] = funvalue("arg", 1, &d);
if (fact_ref[tot_ref] < 0. || fact_ref[tot_ref] > 1.) goto badopt;
}
d = 9; tolerance = funvalue("arg", 1, &d);
if (tolerance <= 0.) goto badopt;
d = 10; tolsource = funvalue("arg", 1, &d);
if (tolsource < 0. ) goto badopt;
X(r_initial) = varvalue("Dx");
Y(r_initial) = varvalue("Dy");
Z(r_initial) = varvalue("Dz");
#ifdef DEBUG
fprintf(stderr,"dx=%lf dy=%lf dz=%lf\n",X(r_initial),Y(r_initial),Z(r_initial));
#endif
/* initialisation */
prepare_matrices();
r_initial.e = 1.0;
r_initial.n = 1.0;
if(ray!=NULL) free(ray);
nbrayons = 0;
/* determination de l'origine et de la destination du rayon initial */
if ( X(r_initial) != 0.)
{
if ( X(r_initial) > 0. )
{
r_initial.orig = r_initial.dest = ALPHA;
sens = 1;
}
else if ( X(r_initial) < 0. )
{
r_initial.orig = r_initial.dest = DELTA;
sens = -1;
}
normalize(r_initial.v);
trace_rayon(r_initial);
X(rsource) = varvalue("DxA");
Y(rsource) = varvalue("DyA");
Z(rsource) = varvalue("DzA");
nosource = ( X(rsource)==0. && Y(rsource)==0. && Z(rsource)==0. );
if ( !nosource )
{
for (j=0; j<nbrayons; j++)
{
if ( !compare(ray[j],rsource,tolsource) ) ray[j].e =0.;
}
}
for (j = 0; j < nbrayons; j++)
{
for (i = j+1; i < nbrayons; i++)
{
if (ray[j].e < ray[i].e) inverser(&ray[j],&ray[i]);
}
}
bidon = 1;
}
else bidon = 0;
return;
/* message puis sortie si erreur dans la ligne de commande */
badopt:
bidon = BADVAL;
return;
}
static double
l_get_val(
char *nm
)
{
int val, dir, i, trouve, curseur;
int nb;
double valeur;
TRAYON *rayt=NULL, raynull;
if (prismclock < 0 || prismclock < eclock) setprism();
if (bidon == BADVAL) {
errno = EDOM;
return(0.0);
}
val = (int)(argument(1) + .5);
dir = (int)(argument(2) + .5);
nb = (int)(argument(3) + .5);
X(raynull) = bidon;
Y(raynull) = Z(raynull) = 0.;
raynull.e = 0.;
trouve = curseur = 0;
if ( !nosource && nb==2 ) nb=1; /* on est en train de tracer la source
a partir de sa seconde source virtuelle */
#ifdef DEBUG
fprintf(stderr, " On considere le rayon no: %d\n", nb);
#endif
for(i=0; i < nbrayons &&!trouve; i++)
{
if(ray[i].v[0] * dir * sens >= 0.) curseur ++;
if(curseur == nb)
{
rayt = &ray[i];
trouve = 1;
}
}
if(!trouve) rayt = &raynull;
switch(val) {
case 0 : valeur = rayt->v[0];
break;
case 1 : valeur = rayt->v[1];
break;
case 2 : valeur = rayt->v[2];
break;
case 3 : valeur = rayt->e;
break;
default : errno = EDOM; return(0.0);
}
#ifdef DEBUG
fprintf(stderr, "get_val( %i, %i, %i) = %lf\n",val,dir,nb,valeur);
#endif
return valeur;
}
void
setprismfuncs(void) /* declared in func.h */
{
funset("fprism_val", 3, '=', l_get_val);
}

Event Timeline