Page MenuHomec4science

raycalls.c
No OneTemporary

File Metadata

Created
Thu, Jun 27, 06:47

raycalls.c

#ifndef lint
static const char RCSid[] = "$Id: raycalls.c,v 2.25 2019/04/19 16:29:10 greg Exp $";
#endif
/*
* raycalls.c - interface for running Radiance rendering as a library
*
* External symbols declared in ray.h
*/
#include "copyright.h"
/*
* These routines are designed to aid the programmer who wishes
* to call Radiance as a library. Unfortunately, the system was
* not originally intended to be run this way, and there are some
* awkward limitations to contend with. The most irritating
* perhaps is that the global variables and functions do not have
* a prefix, and the symbols are a bit generic. This results in a
* serious invasion of the calling application's name-space, and
* you may need to rename either some Radiance routines or some
* of your routines to avoid conflicts. Another limitation is
* that the global variables are not gathered together into any
* sort of context, so it is impossible to simultaneously run
* this library on multiple scenes or in multiple threads.
* You get one scene and one thread, and if you want more, you
* will have to go with the process model defined in raypcalls.c.
* Finally, unrecoverable errors result in a call to the application-
* defined function quit(). The usual thing to do is to call exit().
* You might want to do something else instead, like
* call setjmp()/longjmp() to bring you back to the calling
* function for recovery. You may also wish to define your own
* wputs(s) and eputs(s) functions to output warning and error
* messages, respectively.
*
* With those caveats, we have attempted to make the interface
* as simple as we can. Global variables and their defaults
* are defined below, and including "ray.h" declares these
* along with all the routines you are likely to need. First,
* assign the global variable progname to your argv[0], then
* change the rendering parameters as you like. If you have a set
* of option arguments you are working from, the getrenderopt(ac,av)
* call should be very useful. Before tracing any rays, you
* must read in the octree with a call to ray_init(oct).
* Passing NULL for the file name causes ray_init() to read
* the octree from the standard input -- rarely a good idea.
* However, one may read an octree from a program (such as
* oconv) by preceding a shell command by a '!' character.
*
* To trace a ray, define a RAY object myRay and assign:
*
* myRay.rorg = ( ray origin point )
* myRay.rdir = ( normalized ray direction )
* myRay.rmax = ( maximum length, or zero for no limit )
*
* If you are rendering from a VIEW structure, this can be
* accomplished with a single call for the ray at (x,y):
*
* myRay.rmax = viewray(myRay.rorg, myRay.rdir, &myView, x, y);
*
* Then, trace the primary ray with:
*
* ray_trace(&myRay);
*
* The resulting contents of myRay should provide you with
* more than enough information about what the ray hit,
* the computed value, etc. For further clues of how to
* compute irradiance, how to get callbacks on the evaluated
* ray tree, etc., see the contents of rtrace.c. See
* also the rpmain.c, rtmain.c, and rvmain.c modules
* to learn more how rendering options are processed.
*
* When you are done, you may call ray_done(1) to clean
* up memory used by Radiance. It doesn't free everything,
* but it makes a valiant effort. If you call ray_done(0),
* it leaves data that is likely to be reused, including
* loaded data files and fonts. The library may be
* restarted at any point by calling ray_init() on a new
* octree.
*
* The call ray_save(rp) fills a parameter structure
* with the current global parameter settings, which may be
* restored at any time with a call to ray_restore(rp).
* This buffer contains no linked information, and thus
* may be passed between processes using write() and
* read() calls, so long as byte order is maintained.
* Calling ray_restore(NULL) restores the original
* default parameters, which is also retrievable with
* the call ray_defaults(rp). (These should be the
* same as the defaults for rtrace.)
*/
#include <string.h>
#include <time.h>
#include "ray.h"
#include "source.h"
#include "bsdf.h"
#include "ambient.h"
#include "otypes.h"
#include "random.h"
#include "data.h"
#include "font.h"
#include "pmapray.h"
char *progname = "unknown_app"; /* caller sets to argv[0] */
char *octname; /* octree name we are given */
char *shm_boundary = NULL; /* boundary of shared memory */
CUBE thescene; /* our scene */
OBJECT nsceneobjs; /* number of objects in our scene */
int dimlist[MAXDIM]; /* sampling dimensions */
int ndims = 0; /* number of sampling dimensions */
int samplendx = 0; /* index for this sample */
void (*trace)() = NULL; /* trace call */
void (*addobjnotify[8])() = {ambnotify, NULL};
int do_irrad = 0; /* compute irradiance? */
int rand_samp = 1; /* pure Monte Carlo sampling? */
double dstrsrc = 0.0; /* square source distribution */
double shadthresh = .03; /* shadow threshold */
double shadcert = .75; /* shadow certainty */
int directrelay = 2; /* number of source relays */
int vspretest = 512; /* virtual source pretest density */
int directvis = 1; /* sources visible? */
double srcsizerat = .2; /* maximum ratio source size/dist. */
COLOR cextinction = BLKCOLOR; /* global extinction coefficient */
COLOR salbedo = BLKCOLOR; /* global scattering albedo */
double seccg = 0.; /* global scattering eccentricity */
double ssampdist = 0.; /* scatter sampling distance */
double specthresh = .15; /* specular sampling threshold */
double specjitter = 1.; /* specular sampling jitter */
int backvis = 1; /* back face visibility */
int maxdepth = -10; /* maximum recursion depth */
double minweight = 2e-3; /* minimum ray weight */
char *ambfile = NULL; /* ambient file name */
COLOR ambval = BLKCOLOR; /* ambient value */
int ambvwt = 0; /* initial weight for ambient value */
double ambacc = 0.1; /* ambient accuracy */
int ambres = 256; /* ambient resolution */
int ambdiv = 1024; /* ambient divisions */
int ambssamp = 512; /* ambient super-samples */
int ambounce = 0; /* ambient bounces */
char *amblist[AMBLLEN+1]; /* ambient include/exclude list */
int ambincl = -1; /* include == 1, exclude == 0 */
static void
reset_random(void) /* re-initialize random number generator */
{
if (rand_samp) {
srandom((long)time(0));
initurand(0);
} else {
srandom(0L);
initurand(2048);
}
}
void
ray_init( /* initialize ray-tracing calculation */
char *otnm
)
{
if (nobjects > 0) /* free old scene data */
ray_done(0);
/* initialize object types */
if (ofun[OBJ_SPHERE].funp == o_default)
initotypes();
/* initialize urand */
reset_random();
/* read scene octree */
readoct(octname = otnm, ~(IO_FILES|IO_INFO), &thescene, NULL);
nsceneobjs = nobjects;
/* PMAP: Init & load photon maps */
ray_init_pmap();
/* find and mark sources */
marksources();
/* initialize ambient calculation */
setambient();
/* ready to go... (almost) */
}
void
ray_trace( /* trace a primary ray */
RAY *r
)
{
rayorigin(r, PRIMARY, NULL, NULL);
samplendx++;
rayvalue(r); /* assumes origin and direction are set */
}
void
ray_done( /* free ray-tracing data */
int freall
)
{
retainfonts = 1;
ambdone();
ambnotify(OVOID);
freesources();
freeobjects(0, nobjects);
donesets();
octdone();
thescene.cutree = EMPTY;
octname = NULL;
retainfonts = 0;
if (freall) {
freefont(NULL);
freedata(NULL);
SDfreeCache(NULL);
initurand(0);
}
if (nobjects > 0) {
sprintf(errmsg, "%ld objects left after call to ray_done()",
(long)nobjects);
error(WARNING, errmsg);
}
ray_done_pmap();
}
void
ray_save( /* save current parameter settings */
RAYPARAMS *rp
)
{
int i, ndx;
if (rp == NULL)
return;
rp->do_irrad = do_irrad;
rp->rand_samp = rand_samp;
rp->dstrsrc = dstrsrc;
rp->shadthresh = shadthresh;
rp->shadcert = shadcert;
rp->directrelay = directrelay;
rp->vspretest = vspretest;
rp->directvis = directvis;
rp->srcsizerat = srcsizerat;
copycolor(rp->cextinction, cextinction);
copycolor(rp->salbedo, salbedo);
rp->seccg = seccg;
rp->ssampdist = ssampdist;
rp->specthresh = specthresh;
rp->specjitter = specjitter;
rp->backvis = backvis;
rp->maxdepth = maxdepth;
rp->minweight = minweight;
if (ambfile != NULL)
strncpy(rp->ambfile, ambfile, sizeof(rp->ambfile)-1);
else
memset(rp->ambfile, '\0', sizeof(rp->ambfile));
copycolor(rp->ambval, ambval);
rp->ambvwt = ambvwt;
rp->ambacc = ambacc;
rp->ambres = ambres;
rp->ambdiv = ambdiv;
rp->ambssamp = ambssamp;
rp->ambounce = ambounce;
rp->ambincl = ambincl;
memset(rp->amblval, '\0', sizeof(rp->amblval));
ndx = 0;
for (i = 0; i < AMBLLEN && amblist[i] != NULL; i++) {
int len = strlen(amblist[i]);
if (ndx+len >= sizeof(rp->amblval))
break;
strcpy(rp->amblval+ndx, amblist[i]);
rp->amblndx[i] = ndx;
ndx += len+1;
}
while (i <= AMBLLEN)
rp->amblndx[i++] = -1;
/* PMAP: save photon mapping params */
ray_save_pmap(rp);
}
void
ray_restore( /* restore parameter settings */
RAYPARAMS *rp
)
{
int i;
if (rp == NULL) { /* restore defaults */
RAYPARAMS dflt;
ray_defaults(&dflt);
ray_restore(&dflt);
return;
}
/* restore saved settings */
do_irrad = rp->do_irrad;
if (!rand_samp != !rp->rand_samp) {
rand_samp = rp->rand_samp;
reset_random();
}
dstrsrc = rp->dstrsrc;
shadthresh = rp->shadthresh;
shadcert = rp->shadcert;
directrelay = rp->directrelay;
vspretest = rp->vspretest;
directvis = rp->directvis;
srcsizerat = rp->srcsizerat;
copycolor(cextinction, rp->cextinction);
copycolor(salbedo, rp->salbedo);
seccg = rp->seccg;
ssampdist = rp->ssampdist;
specthresh = rp->specthresh;
specjitter = rp->specjitter;
backvis = rp->backvis;
maxdepth = rp->maxdepth;
minweight = rp->minweight;
copycolor(ambval, rp->ambval);
ambvwt = rp->ambvwt;
ambdiv = rp->ambdiv;
ambssamp = rp->ambssamp;
ambounce = rp->ambounce;
/* a bit dangerous if not static */
for (i = 0; rp->amblndx[i] >= 0; i++)
amblist[i] = rp->amblval + rp->amblndx[i];
while (i <= AMBLLEN)
amblist[i++] = NULL;
ambincl = rp->ambincl;
/* update ambient calculation */
ambnotify(OVOID);
if (thescene.cutree != EMPTY) {
int newamb = (ambfile == NULL) ? rp->ambfile[0] :
strcmp(ambfile, rp->ambfile) ;
if (amblist[0] != NULL)
for (i = 0; i < nobjects; i++)
ambnotify(i);
ambfile = (rp->ambfile[0]) ? rp->ambfile : (char *)NULL;
if (newamb) {
ambres = rp->ambres;
ambacc = rp->ambacc;
setambient();
} else {
setambres(rp->ambres);
setambacc(rp->ambacc);
}
} else {
ambfile = (rp->ambfile[0]) ? rp->ambfile : (char *)NULL;
ambres = rp->ambres;
ambacc = rp->ambacc;
}
/* PMAP: restore photon mapping params */
ray_restore_pmap(rp);
}
void
ray_defaults( /* get default parameter values */
RAYPARAMS *rp
)
{
int i;
if (rp == NULL)
return;
rp->do_irrad = 0;
rp->rand_samp = 1;
rp->dstrsrc = 0.0;
rp->shadthresh = .03;
rp->shadcert = .75;
rp->directrelay = 2;
rp->vspretest = 512;
rp->directvis = 1;
rp->srcsizerat = .2;
setcolor(rp->cextinction, 0., 0., 0.);
setcolor(rp->salbedo, 0., 0., 0.);
rp->seccg = 0.;
rp->ssampdist = 0.;
rp->specthresh = .15;
rp->specjitter = 1.;
rp->backvis = 1;
rp->maxdepth = -10;
rp->minweight = 2e-3;
memset(rp->ambfile, '\0', sizeof(rp->ambfile));
setcolor(rp->ambval, 0., 0., 0.);
rp->ambvwt = 0;
rp->ambres = 256;
rp->ambacc = 0.15;
rp->ambdiv = 1024;
rp->ambssamp = 512;
rp->ambounce = 0;
rp->ambincl = -1;
memset(rp->amblval, '\0', sizeof(rp->amblval));
for (i = AMBLLEN+1; i--; )
rp->amblndx[i] = -1;
/* PMAP: restore photon mapping defaults */
ray_defaults_pmap(rp);
}

Event Timeline