Page MenuHomec4science

wavelet2.c
No OneTemporary

File Metadata

Created
Sat, Apr 27, 00:20

wavelet2.c

/*
=========================================================================
2-dimensional wavelet transform on (2^l) x (2^l) sized arrays of 3-tuples,
where l > 1.
Compile with -DWAVELET_TEST to build standalone unit tests.
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
(c) Lucerne University of Applied Sciences and Arts,
supported by the Swiss National Science Foundation
(SNSF #179067, "Light Fields for Spatio-Temporal Glare Assessment")
=========================================================================
$Id$
*/
#include "wavelet2.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#define COEFSIZE (sizeof(Coeff3))
#define min(a, b) ((a) < (b) ? (a) : (b))
#define coeffAvg(a) (((a).coeff [0] + (a).coeff [1] + (a).coeff [2]) / 3)
/* Daubechies D4 wavelet coeffs */
static const Coeff h4Norm = 0.25 / sqrt(2), sqrt3 = sqrt(3),
h4 [4] = {
h4Norm * (1 + sqrt3), h4Norm * (3 + sqrt3),
h4Norm * (3 - sqrt3), h4Norm * (1 - sqrt3)
},
g4 [4] = { h4 [3], -h4 [2], h4 [1], -h4 [0] };
/* Haar wavelet coeffs */
static const Coeff h2 = 1 / sqrt(2);
#ifdef WAVELET_DBG
static void zeroCoeffs (CoeffArray2 y, unsigned l)
/* Zero output array to facilitate debugging */
{
const unsigned len = 1 << l;
unsigned i;
for (i = 0; i < len; i++)
memset(y [i], 0, len * COEFSIZE);
}
static void dumpCoeffs (const CoeffArray2 y, const CoeffArray2 yt,
unsigned l
) {
const unsigned len = 1 << l;
unsigned i, j, k;
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++)
printf("%4.3f\t", coeffAvg(y [i][j]));
printf("-->\t");
for (j = 0; j < len; j++)
printf("%4.3f\t", coeffAvg(yt [i][j]));
putchar('\n');
}
}
#endif
static int haarStep (CoeffArray2 y, CoeffArray2 yt, unsigned l)
/*
Single step of forward 2D Haar wavelet transform on array y of size
(2^l)x(2^l) containing 3-tuples, where l >= 1. The transform is
performed over y's 2nd axis (i.e. horizontally, assuming row-major
addressing as per C convention).
Note the triplets per array element are _not_ decorrelated, but
transformed independently.
The wavelet coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the generated
coefficients vertically, and prepares the array for another transform
over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
decorrelated.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 0;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 2 || !y || !yt)
/* Input shorter than wavelet support, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: yt is transposed on the fly such that the next function call
* transforms over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
for (j = 0; j < len; j += 2) {
h = j >> 1;
for (k = 0; k < 3; k++) {
/* Smooth/approx/avg/lowpass */
yt [h ][i].coeff [k] = h2 * (
y [i][j ].coeff [k] +
y [i][j + 1].coeff [k]
);
/* Detail/diff/highpass */
yt [hlen + h][i].coeff [k] = h2 * (
y [i][j ].coeff [k] -
y [i][j + 1].coeff [k]
);
}
}
}
#ifdef WAVELET_DBG
printf("%s FWD HAAR (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
static int haarInvStep (CoeffArray2 y, CoeffArray2 yt, unsigned l)
/*
Single step of inverse 2D Haar wavelet transform on coefficient array y
of size (2^l) x (2^l) containing 3-tuples, where l >= 1. This reverses
the forward transform above. The transform is inverted over y's 2nd axis
(i.e. horizontally, assuming row-major addressing as per C convention).
The inverted coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the inverted
coefficients vertically, and prepares the array for another inverse
transform over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent inverse transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
inversely transformed.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 1;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 2 || !y || !yt)
/* Too few coeffs for reconstruction, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: i, j are swapped relative to the forward transform, as axis
* order is now reversed. */
/* NOTE: yt is transposed on the fly such that the next function call
* inverts over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
for (j = 0; j < len; j += 2) {
h = j >> 1;
for (k = 0; k < 3; k++) {
yt [i][j ].coeff [k] = h2 * (
y [h ][i].coeff [k] + /* Avg */
y [hlen + h][i].coeff [k] /* Diff */
);
yt [i][j + 1].coeff [k] = h2 * (
y [h ][i].coeff [k] - /* Avg */
y [hlen + h][i].coeff [k] /* Diff */
);
}
}
}
#ifdef WAVELET_DBG
printf("%s INV HAAR (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
static int d4Step (CoeffArray2 y, CoeffArray2 yt, unsigned l)
/*
Single step of forward 2D Daubechies D4 wavelet transform on array y of
size (2^l)x(2^l) containing 3-tuples, where l >= 2. The transform is
performed over y's 2nd axis (i.e. horizontally, assuming row-major
addressing as per C convention).
Note the triplets per array element are _not_ decorrelated, but
transformed independently.
The wavelet coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the generated
coefficients vertically, and prepares the array for another transform
over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
decorrelated.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 0;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 4 || !y || !yt)
/* Input shorter than wavelet support, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: yt is transposed on the fly such that the next function call
* transforms over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
/* Transform until upper boundary */
for (j = 0; j < len - 2; j += 2) {
h = j >> 1;
for (k = 0; k < 3; k++) {
/* Smooth/approx/avg/lowpass */
yt [h ][i].coeff [k] =
h4 [0] * y [i][j ].coeff [k] +
h4 [1] * y [i][j + 1].coeff [k] +
h4 [2] * y [i][j + 2].coeff [k] +
h4 [3] * y [i][j + 3].coeff [k];
/* Detail/diff/highpass */
yt [hlen + h][i].coeff [k] =
g4 [0] * y [i][j ].coeff [k] +
g4 [1] * y [i][j + 1].coeff [k] +
g4 [2] * y [i][j + 2].coeff [k] +
g4 [3] * y [i][j + 3].coeff [k];
}
}
/* Transform at upper boundary with wraparound.
Note j is set to last index from previous loop */
h = j >> 1;
for (k = 0; k < 3; k++) {
/* Smooth/approx/avg/lowpass */
yt [h ][i].coeff [k] =
h4 [0] * y [i][j ].coeff [k] +
h4 [1] * y [i][j + 1].coeff [k] +
h4 [2] * y [i][0 ].coeff [k] +
h4 [3] * y [i][1 ].coeff [k];
/* Detail/diff/highpass */
yt [hlen + h][i].coeff [k] =
g4 [0] * y [i][j ].coeff [k] +
g4 [1] * y [i][j + 1].coeff [k] +
g4 [2] * y [i][0 ].coeff [k] +
g4 [3] * y [i][1 ].coeff [k];
}
}
#ifdef WAVELET_DBG
printf("%s FWD D4 (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
static int d4InvStep (CoeffArray2 y, CoeffArray2 yt, unsigned l)
/*
Single step of inverse 2D Daubechies D4 wavelet transform on coefficient array y
of size (2^l) x (2^l) containing 3-tuples, where l >= 2. This reverses
the forward transform above. The transform is inverted over y's 2nd axis
(i.e. horizontally, assuming row-major addressing as per C convention).
The inverted coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the inverted
coefficients vertically, and prepares the array for another inverse
transform over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent inverse transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
inversely transformed.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 1;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 4 || !y || !yt)
/* Too few coeffs for reconstruction, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: i, j are swapped relative to the forward transform, as axis
* order is now reversed. */
/* NOTE: yt is transposed on the fly such that the next function call
* inverts over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
/* Invert at lower boundary with wraparound */
for (k = 0; k < 3; k++) {
yt [i][0].coeff [k] =
h4 [2] * y [hlen - 1][i].coeff [k] + /* Last avg */
g4 [2] * y [len - 1][i].coeff [k] + /* Last diff */
h4 [0] * y [0 ][i].coeff [k] + /* First avg */
g4 [0] * y [hlen ][i].coeff [k]; /* First diff */
yt [i][1].coeff [k] =
h4 [3] * y [hlen - 1][i].coeff [k] +
g4 [3] * y [len - 1][i].coeff [k] +
h4 [1] * y [0 ][i].coeff [k] +
g4 [1] * y [hlen ][i].coeff [k];
}
/* Invert until upper boundary */
for (j = 2; j < len; j += 2) {
h = (j >> 1) - 1;
for (k = 0; k < 3; k++) {
yt [i][j ].coeff [k] =
h4 [2] * y [h ][i].coeff [k] + /* Avg */
g4 [2] * y [hlen + h ][i].coeff [k] + /* Diff */
h4 [0] * y [h + 1 ][i].coeff [k] + /* Next avg */
g4 [0] * y [hlen + h + 1][i].coeff [k]; /* Next diff */
yt [i][j + 1].coeff [k] =
h4 [3] * y [h ][i].coeff [k] +
g4 [3] * y [hlen + h ][i].coeff [k] +
h4 [1] * y [h + 1 ][i].coeff [k] +
g4 [1] * y [hlen + h + 1][i].coeff [k];
}
}
}
#ifdef WAVELET_DBG
printf("%s INV D4 (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
CoeffArray2 waveletAllocCoeffArray2 (unsigned l)
/*
Allocate and return a 2D coefficient array of size (2^l) x (2^l),
where l >= 1. Returns NULL if allocation failed.
*/
{
const unsigned len = 1 << l;
unsigned i;
CoeffArray2 y = NULL;
if (l >= 1) {
if (!(y = calloc(len, sizeof(Coeff3*))))
return NULL;
for (i = 0; i < len; i++)
if (!(y [i] = calloc(len, COEFSIZE)))
return NULL;
}
return y;
}
void waveletFreeCoeffArray2 (CoeffArray2 y, unsigned l)
/*
Free previously allocated 2D coefficient array y of size (2^l) x (2^l)
*/
{
unsigned i, j;
const unsigned len = 1 << l;
if (y) {
for (i = 0; i < len; i++)
free(y [i]);
free(y);
}
}
int waveletXform2 (CoeffArray2 y, CoeffArray2 yt, unsigned l)
/*
Perform full 2D multiresolution forward wavelet transform on array y of
size (2^l) x (2^l) containing original signal as 3-tuples, where l >= 1.
Note no intra-tuple transform occurs.
The wavelet coefficients are returned in array y, containing the coarsest
approximation in y [0][0] followed by horizontal/vertical details in
order of increasing resolution/frequency.
A preallocated array yt of identical dimensions to y can be supplied as
buffer for intermediate results. If yt == NULL, a buffer is
automatically allocated and freed on demand, but this is inefficient for
frequent calls. It is recommended to preallocate yt to the maximum
expected size. The dimensions of yt are not checked; this is the
caller's responsibility.
Returns 0 on success, else -1.
*/
{
const unsigned len = 1 << l;
unsigned li;
CoeffArray2 ytloc = NULL;
/* Skip transform if input too short or missing */
if (l < 1 || !y)
return -1;
if (!yt)
/* No buffer supplied; allocate one on demand */
if (!(yt = ytloc = waveletAllocCoeffArray2(l))) {
fprintf(stderr, "ERROR - Failed allocating %dx%d buffer array"
" in WaveletXform2()", len, len);
return -1;
}
for (li = l; li > 1; li--) {
/* Apply horizontal & vertical Daubechies D4 transform, swapping input
and transposed output array */
if (d4Step(y, yt, li) || d4Step(yt, y, li))
return -1;
}
/* Apply horizontal & vertical Haar transform at coarsest resolution
(li==1) to obtain single approximation coefficient at y [0][0]; all
other coeffs are details. */
if (haarStep(y, yt, li) || haarStep(yt, y, li))
return -1;
/* NOTE: All coefficients now in y */
if (ytloc)
/* Free yt if allocated on demand */
waveletFreeCoeffArray2(ytloc, l);
return 0;
}
int waveletInvXform2 (CoeffArray2 y, CoeffArray2 yt, unsigned l)
/*
Perform full 2D multiresolution inverse wavelet transform on array y of
size (2^l) x (2^l) containing wavelet coefficients as 3-tuples, where
l >= 1. Note no intra-tuple transform occurs.
A preallocated array yt of identical dimensions to y can be supplied as
buffer for intermediate results. If yt == NULL, a buffer is
automatically allocated and freed on demand, but this is inefficient for
frequent calls. It is recommended to preallocate yt to the maximum
expected size. The dimensions of yt are not checked; this is the
caller's responsibility.
The reconstructed signal is returned in array y.
Returns 0 on success, else -1.
*/
{
const unsigned len = 1 << l;
unsigned li;
CoeffArray2 ytloc = NULL;
/* Skip inverse transform if input too short or missing */
if (l < 1 || !y)
return -1;
if (!yt)
/* No buffer supplied; allocate one on demand */
if (!(yt = ytloc = waveletAllocCoeffArray2(l))) {
fprintf(stderr, "ERROR - Failed allocating %dx%d buffer array"
" in WaveletInvXform2()", len, len);
return -1;
}
/* Invert horizontal & vertical Haar transform at coarsest level (li==1),
swapping input and transposed output array */
if (haarInvStep(y, yt, 1) || haarInvStep(yt, y, 1))
return -1;
for (li = 2; li <= l; li++) {
/* Invert horizontal & vertical Daubechies D4 transform, swapping
input and transposed output arrays */
if (d4InvStep(y, yt, li) || d4InvStep(yt, y, li))
return -1;
}
/* NOTE: Reconstructed signal now in y */
if (ytloc)
/* Free yt if allocated on demand */
waveletFreeCoeffArray2(ytloc, l);
return 0;
}
#ifdef WAVELET_TEST
#include <stdio.h>
#define ERRSTRLEN 1024
int main (int argc, char *argv [])
{
int i, j, k, l;
unsigned len;
CoeffArray2 y0 = NULL, y = NULL;
char errstr [ERRSTRLEN];
FILE *dataFile = NULL;
if (argc < 2) {
fprintf(stderr, "%s <l> [dataFile]\n", argv [0]);
fputs("Missing array resolution l > 1\n", stderr);
return -1;
}
if (!(l = atoi(argv [1])) || l < 1) {
fputs("Invalid array resolution l\n", stderr);
return -1;
}
else len = 1 << l;
/* Allocate arrays for original and reconstruction */
if (!(y0 = waveletAllocCoeffArray2(l)) ||
!(y = waveletAllocCoeffArray2(l))
) {
fprintf(stderr, "Failed allocating %dx%d array\n", len, len);
return -1;
}
if (argc > 2) {
/* Load data from file; length must not exceed allocated */
if (!(dataFile = fopen(argv [2], "r"))) {
fprintf(stderr, "Failed opening data file %s\n", argv [2]);
return -1;
}
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++) {
if (feof(dataFile)) {
fprintf(stderr,
"Premature end of file reading data from %s\n",
argv [2]
);
fclose(dataFile);
return -1;
}
/* Read next float, skipping any leading whitespace */
fscanf(dataFile, " %lf", &y [i][j].coeff [2]);
y0 [i][j].coeff [0] = y0 [i][j].coeff [1] =
y0 [i][j].coeff [2] = y [i][j].coeff [0] =
y [i][j].coeff [1] = y [i][j].coeff [2];
}
}
fclose(dataFile);
}
else {
/* Init with random data */
srand48(111);
for (i = 0; i < len; i++)
for (j = 0; j < len; j++)
#if 1
for (k = 0; k < 3; k++)
y0 [i][j].coeff [k] = y [i][j].coeff [k] = drand48();
#else
y0 [i][j].coeff [0] = y0 [i][j].coeff [1] =
y0 [i][j].coeff [2] = y [i][j].coeff [0] =
y [i][j].coeff [1] = y [i][j].coeff [2] = drand48();
#endif
}
/* Forward xform */
if (waveletXform2(y, NULL, l)) {
fputs("Forward xform failed\n", stderr);
return -1;
}
#ifdef WAVELET_DBG
/* Dump coefficients */
puts("-----------------------------------------------------------\n");
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++)
printf("%4.3f\t", coeffAvg(y [i][j]));
putchar('\n');
}
puts("\n-----------------------------------------------------------\n");
#endif
/* Inverse xform */
if (waveletInvXform2(y, NULL, l)) {
fputs("Inverse xform failed\n", stderr);
return -1;
}
#ifdef WAVELET_DBG
puts("-----------------------------------------------------------\n");
#endif
puts("ORIG\tvs.\tINV XFORM");
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++)
printf("%4.3f\t", coeffAvg(y0 [i][j]));
printf("\t\t");
for (j = 0; j < len; j++)
printf("%4.3f\t", coeffAvg(y [i][j]));
putchar('\n');
}
waveletFreeCoeffArray2(y0, l);
waveletFreeCoeffArray2(y, l);
return 0;
}
#endif

Event Timeline