Page MenuHomec4science

wavelet2.c
No OneTemporary

File Metadata

Created
Mon, May 20, 12:28

wavelet2.c

/*
=========================================================================
2-dimensional wavelet transform on (2^l) x (2^l) sized arrays of 3-tuples,
where l > 1.
Compile with -DWAVELET_TEST to build standalone unit tests.
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
(c) Lucerne University of Applied Sciences and Arts,
supported by the Swiss National Science Foundation
(SNSF #179067, "Light Fields for Spatio-Temporal Glare Assessment")
=========================================================================
$Id$
*/
#include "wavelet2.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define coeffAvg(a) (((a) [0] + (a) [1] + (a) [2]) / 3)
#define coeffThresh(c, t) ( \
fabs((c) [0]) < (t) || fabs((c) [1]) < (t) || fabs((c) [2]) < (t) \
)
/* The following defs are const, but strict compilers pretend to be dumber
than they are, and refuse to init from a func (in this case sqrt(2)
and sqrt(3)), or other consts */
#define SQRT2 1.41421356
#define SQRT3 1.73205081
#define H4NORM (0.25 / SQRT2)
/* Haar wavelet coeffs */
static const WAVELET_COEFF h2 = 1 / SQRT2;
/* Daubechies D4 wavelet coeffs */
static const WAVELET_COEFF h4 [4] = {
H4NORM * (1 + SQRT3), H4NORM * (3 + SQRT3),
H4NORM * (3 - SQRT3), H4NORM * (1 - SQRT3)
};
static const WAVELET_COEFF g4 [4] = {
H4NORM * (1 - SQRT3), -H4NORM * (3 - SQRT3),
H4NORM * (3 + SQRT3), -H4NORM * (1 + SQRT3)
};
/* g4 [4] = { h4 [3], -h4 [2], h4 [1], -h4 [0] }; */
WaveletMatrix allocWaveletMatrix (unsigned l)
/*
Allocate and return a 2D coefficient array of size (2^l) x (2^l),
where l >= 1. Returns NULL if allocation failed.
*/
{
const unsigned len = 1 << l;
unsigned i;
WaveletMatrix y = NULL;
if (l >= 1) {
if (!(y = calloc(len, sizeof(WaveletCoeff3*))))
return NULL;
for (i = 0; i < len; i++)
if (!(y [i] = calloc(len, WAVELET_COEFFSIZE)))
return NULL;
}
return y;
}
void freeWaveletMatrix (WaveletMatrix y, unsigned l)
/*
Free previously allocated 2D coefficient array y of size (2^l) x (2^l)
*/
{
unsigned i, j;
const unsigned len = 1 << l;
if (y) {
for (i = 0; i < len; i++)
free(y [i]);
free(y);
}
}
#ifdef WAVELET_DBG
static void zeroCoeffs (WaveletMatrix y, unsigned l)
/* Zero output array to facilitate debugging */
{
const unsigned len = 1 << l;
unsigned i;
for (i = 0; i < len; i++)
memset(y [i], 0, len * WAVELET_COEFFSIZE);
}
static void dumpCoeffs (const WaveletMatrix y, const WaveletMatrix yt,
unsigned l, float thresh
)
/* Dump arrays y and yt side-by-side to stdout (skip yt if NULL) */
{
const unsigned len = 1 << l;
unsigned i, j, k;
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++)
printf(
#ifdef WAVELET_FINALHAAR
(i | j) && coeffThresh(y [i][j], thresh)
#else
(i > 1 || j > 1) && coeffThresh(y [i][j], thresh)
#endif
? "[% 5.2f]\t" : " % 5.2f\t",
coeffAvg(y [i][j])
);
if (yt) {
printf(" -->\t");
for (j = 0; j < len; j++)
printf("% 5.2f\t", coeffAvg(yt [i][j]));
}
putchar('\n');
}
}
static float rmseCoeffs (const WaveletMatrix y1, const WaveletMatrix y2,
unsigned l
)
/* Calculate RMSE between matrices y and y0 */
{
const unsigned len = 1 << l;
unsigned i, j;
float d, rmse = 0;
for (i = 0; i < len; i++)
for (j = 0; j < len; j++) {
#if 0
d = (coeffAvg(y1 [i][j]) - coeffAvg(y2 [i][j])) /
coeffAvg(y1 [i][j]);
#else
d = coeffAvg(y1 [i][j]) - coeffAvg(y2 [i][j]);
#endif
rmse += d * d;
}
return sqrt(rmse / ((float)len * len));
}
#endif
static int haarStep (WaveletMatrix y, WaveletMatrix yt, unsigned l)
/*
Single step of forward 2D Haar wavelet transform on array y of size
(2^l) x (2^l) containing 3-tuples, where l >= 1. The transform is
performed over y's 2nd axis (i.e. horizontally, assuming row-major
addressing as per C convention).
Note the triplets per array element are _not_ decorrelated, but
transformed independently.
The wavelet coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the generated
coefficients vertically, and prepares the array for another transform
over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
decorrelated.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 0;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 2 || !y || !yt)
/* Input shorter than wavelet support, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: yt is transposed on the fly such that the next function call
* transforms over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
for (j = 0; j < len; j += 2) {
h = j >> 1;
for (k = 0; k < 3; k++) {
/* Smooth/approx/avg/lowpass */
yt [h ] [i] [k] = h2 * (
y [i] [j ] [k] +
y [i] [j + 1] [k]
);
/* Detail/diff/highpass */
yt [hlen + h] [i] [k] = h2 * (
y [i] [j ] [k] -
y [i] [j + 1] [k]
);
}
}
}
#ifdef WAVELET_DBG
printf("%s FWD HAAR (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l, 0);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
static int haarInvStep (WaveletMatrix y, WaveletMatrix yt, unsigned l)
/*
Single step of inverse 2D Haar wavelet transform on coefficient array y
of size (2^l) x (2^l) containing 3-tuples, where l >= 1. This reverses
the forward transform above. The transform is inverted over y's 2nd axis
(i.e. horizontally, assuming row-major addressing as per C convention).
The inverted coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the inverted
coefficients vertically, and prepares the array for another inverse
transform over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent inverse transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
inversely transformed.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 1;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 2 || !y || !yt)
/* Too few coeffs for reconstruction, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: i, j are swapped relative to the forward transform, as axis
* order is now reversed. */
/* NOTE: yt is transposed on the fly such that the next function call
* inverts over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
for (j = 0; j < len; j += 2) {
h = j >> 1;
for (k = 0; k < 3; k++) {
yt [i] [j ] [k] = h2 * (
y [h ] [i] [k] + /* Avg */
y [hlen + h] [i] [k] /* Diff */
);
yt [i] [j + 1] [k] = h2 * (
y [h ] [i] [k] - /* Avg */
y [hlen + h] [i] [k] /* Diff */
);
}
}
}
#ifdef WAVELET_DBG
printf("%s INV HAAR (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l, 0);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
static int d4Step (WaveletMatrix y, WaveletMatrix yt, unsigned l)
/*
Single step of forward 2D Daubechies D4 wavelet transform on array y of
size (2^l) x (2^l) containing 3-tuples, where l >= 2. The transform is
performed over y's 2nd axis (i.e. horizontally, assuming row-major
addressing as per C convention).
Note the triplets per array element are _not_ decorrelated, but
transformed independently.
The wavelet coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the generated
coefficients vertically, and prepares the array for another transform
over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
decorrelated.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 0;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 4 || !y || !yt)
/* Input shorter than wavelet support, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: yt is transposed on the fly such that the next function call
* transforms over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
/* Transform until upper boundary */
for (j = 0; j < len - 2; j += 2) {
h = j >> 1;
for (k = 0; k < 3; k++) {
/* Smooth/approx/avg/lowpass */
yt [h ] [i] [k] =
h4 [0] * y [i] [j ] [k] +
h4 [1] * y [i] [j + 1] [k] +
h4 [2] * y [i] [j + 2] [k] +
h4 [3] * y [i] [j + 3] [k];
/* Detail/diff/highpass */
yt [hlen + h] [i] [k] =
g4 [0] * y [i] [j ] [k] +
g4 [1] * y [i] [j + 1] [k] +
g4 [2] * y [i] [j + 2] [k] +
g4 [3] * y [i] [j + 3] [k];
}
}
/* Transform at upper boundary with wraparound.
Note j is set to last index from previous loop */
h = j >> 1;
for (k = 0; k < 3; k++) {
/* Smooth/approx/avg/lowpass */
yt [h ] [i] [k] =
h4 [0] * y [i] [j ] [k] +
h4 [1] * y [i] [j + 1] [k] +
h4 [2] * y [i] [0 ] [k] +
h4 [3] * y [i] [1 ] [k];
/* Detail/diff/highpass */
yt [hlen + h] [i] [k] =
g4 [0] * y [i] [j ] [k] +
g4 [1] * y [i] [j + 1] [k] +
g4 [2] * y [i] [0 ] [k] +
g4 [3] * y [i] [1 ] [k];
}
}
#ifdef WAVELET_DBG
printf("%s FWD D4 (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l, 0);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
static int d4InvStep (WaveletMatrix y, WaveletMatrix yt, unsigned l)
/*
Single step of inverse 2D Daubechies D4 wavelet transform on coefficient
array y of size (2^l) x (2^l) containing 3-tuples, where l >= 2. This
reverses the forward transform above. The transform is inverted over y's
2nd axis (i.e. horizontally, assuming row-major addressing as per C
convention).
The inverted coefficients are returned in the *TRANSPOSED* output array
yt, of identical dimensions to y. The transpose arranges the inverted
coefficients vertically, and prepares the array for another inverse
transform over its 2nd axis in a subsequent call (this time as input y).
The result of a subsequent inverse transform restores yt to y's original
orientation, in which case both horizontal and vertical axes have been
inversely transformed.
Returns 0 on success, else -1.
*/
{
static unsigned axis = 1;
const unsigned len = 1 << l, hlen = 1 << (l - 1);
unsigned h, i, j, k;
if (len < 4 || !y || !yt)
/* Too few coeffs for reconstruction, or no input/output */
return -1;
#ifdef WAVELET_DBG
zeroCoeffs(yt, l);
#endif
/* NOTE: i, j are swapped relative to the forward transform, as axis
* order is now reversed. */
/* NOTE: yt is transposed on the fly such that the next function call
* inverts over the alternate axis. This is done by simply swapping
* the indices during assignment */
for (i = 0; i < len; i++) {
/* Invert at lower boundary with wraparound */
for (k = 0; k < 3; k++) {
yt [i] [0] [k] =
h4 [2] * y [hlen - 1] [i] [k] + /* Last avg */
g4 [2] * y [len - 1] [i] [k] + /* Last diff */
h4 [0] * y [0 ] [i] [k] + /* First avg */
g4 [0] * y [hlen ] [i] [k]; /* First diff */
yt [i] [1] [k] =
h4 [3] * y [hlen - 1] [i] [k] +
g4 [3] * y [len - 1] [i] [k] +
h4 [1] * y [0 ] [i] [k] +
g4 [1] * y [hlen ] [i] [k];
}
/* Invert until upper boundary */
for (j = 2; j < len; j += 2) {
h = (j >> 1) - 1;
for (k = 0; k < 3; k++) {
yt [i] [j ] [k] =
h4 [2] * y [h ] [i] [k] + /* Avg */
g4 [2] * y [hlen + h ] [i] [k] + /* Diff */
h4 [0] * y [h + 1 ] [i] [k] + /* Next avg */
g4 [0] * y [hlen + h + 1] [i] [k]; /* Next diff */
yt [i] [j + 1] [k] =
h4 [3] * y [h ] [i] [k] +
g4 [3] * y [hlen + h ] [i] [k] +
h4 [1] * y [h + 1 ] [i] [k] +
g4 [1] * y [hlen + h + 1] [i] [k];
}
}
}
#ifdef WAVELET_DBG
printf("%s INV D4 (%d x %d)\n", axis ? "VERT" : "HORIZ", len, len);
dumpCoeffs(y, yt, l, 0);
putchar('\n');
axis ^= 1;
#endif
return 0;
}
int waveletXform2 (WaveletMatrix y, WaveletMatrix yt, unsigned l)
/*
Perform full 2D multiresolution forward wavelet transform on array y of
size (2^l) x (2^l) containing original signal as 3-tuples, where l >= 1.
Note no intra-tuple transform occurs.
The wavelet coefficients are returned in array y, containing the coarsest
approximation in y [0..1][0..1] (or just y [0][0] with WAVELET_FINALHAAR
defined) followed by horizontal/vertical details in order of increasing
resolution/frequency.
A preallocated array yt of identical dimensions to y can be supplied as
buffer for intermediate results. If yt == NULL, a buffer is
automatically allocated and freed on demand, but this is inefficient for
frequent calls. It is recommended to preallocate yt to the maximum
expected size. The dimensions of yt are not checked; this is the
caller's responsibility.
Returns 0 on success, else -1.
*/
{
const unsigned len = 1 << l;
unsigned li;
WaveletMatrix ytloc = NULL;
/* Skip transform if input too short or missing */
if (l < 1 || !y)
return -1;
if (!yt)
/* No buffer supplied; allocate one on demand */
if (!(yt = ytloc = allocWaveletMatrix(l))) {
fprintf(stderr, "ERROR - Failed allocating %dx%d buffer array"
" in WaveletXform2()", len, len);
return -1;
}
for (li = l; li > 1; li--) {
/* Apply horizontal & vertical Daubechies D4 transform, swapping input
and transposed output array */
if (d4Step(y, yt, li) || d4Step(yt, y, li))
return -1;
}
#ifdef WAVELET_FINALHAAR
/* Apply horizontal & vertical Haar transform at coarsest resolution
(li==1) to obtain single approximation coefficient at y [0][0]; all
other coeffs are details. */
if (haarStep(y, yt, li) || haarStep(yt, y, li))
return -1;
#endif
/* NOTE: All coefficients now in y */
if (ytloc)
/* Free yt if allocated on demand */
freeWaveletMatrix(ytloc, l);
return 0;
}
int waveletInvXform2 (WaveletMatrix y, WaveletMatrix yt, unsigned l)
/*
Perform full 2D multiresolution inverse wavelet transform on array y of
size (2^l) x (2^l) containing wavelet coefficients as 3-tuples, where
l >= 1. Note no intra-tuple transform occurs.
A preallocated array yt of identical dimensions to y can be supplied as
buffer for intermediate results. If yt == NULL, a buffer is
automatically allocated and freed on demand, but this is inefficient for
frequent calls. It is recommended to preallocate yt to the maximum
expected size. The dimensions of yt are not checked; this is the
caller's responsibility.
The reconstructed signal is returned in array y.
Returns 0 on success, else -1.
*/
{
const unsigned len = 1 << l;
unsigned li;
WaveletMatrix ytloc = NULL;
/* Skip inverse transform if input too short or missing */
if (l < 1 || !y)
return -1;
if (!yt)
/* No buffer supplied; allocate one on demand */
if (!(yt = ytloc = allocWaveletMatrix(l))) {
fprintf(stderr, "ERROR - Failed allocating %dx%d buffer array"
" in WaveletInvXform2()", len, len);
return -1;
}
#ifdef WAVELET_FINALHAAR
/* Invert horizontal & vertical Haar transform at coarsest level (li==1),
swapping input and transposed output array */
if (haarInvStep(y, yt, 1) || haarInvStep(yt, y, 1))
return -1;
#endif
for (li = 2; li <= l; li++) {
/* Invert horizontal & vertical Daubechies D4 transform, swapping
input and transposed output arrays */
if (d4InvStep(y, yt, li) || d4InvStep(yt, y, li))
return -1;
}
/* NOTE: Reconstructed signal now in y */
if (ytloc)
/* Free yt if allocated on demand */
freeWaveletMatrix(ytloc, l);
return 0;
}
#ifdef WAVELET_TEST
#include <stdio.h>
#ifdef WAVELET_TEST_mRGBE
#include "mrgbe.h"
#endif
int main (int argc, char *argv [])
{
int i, j, k, l;
unsigned len, numThresh = 0;
WaveletMatrix y0 = NULL, y = NULL;
FILE *dataFile = NULL;
WAVELET_COEFF inData, thresh = 0;
#ifdef WAVELET_TEST_mRGBE
#define HUGE 1e10
mRGBE mrgbeCoeff;
mRGBERange mrgbeRange;
WaveletMatrix ymrgbe = NULL;
#endif
if (argc < 2) {
fprintf(stderr, "%s <l> [threshold] [dataFile]\n", argv [0]);
fputs("Missing array resolution l > 1, "
"compression threshold >= 0\n", stderr
);
return -1;
}
if (!(l = atoi(argv [1])) || l < 1) {
fputs("Invalid array resolution l\n", stderr);
return -1;
}
else len = 1 << l;
if (argc > 2 && (thresh = atof(argv [2])) < 0) {
fprintf(stderr, "Invalid threshold %.3f\n", thresh);
return -1;
}
/* Allocate arrays for original and reconstruction */
if (!(y0 = allocWaveletMatrix(l)) || !(y = allocWaveletMatrix(l))
#ifdef WAVELET_TEST_mRGBE
|| !(ymrgbe = allocWaveletMatrix(l))
#endif
) {
fprintf(stderr, "Failed allocating %dx%d array\n", len, len);
return -1;
}
if (argc > 3) {
/* Load data from file; length must not exceed allocated */
if (!(dataFile = fopen(argv [3], "r"))) {
fprintf(stderr, "Failed opening data file %s\n", argv [3]);
return -1;
}
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++) {
if (feof(dataFile)) {
fprintf(stderr,
"Premature end of file reading data from %s\n",
argv [2]
);
fclose(dataFile);
return -1;
}
/* Read next float, skipping any leading whitespace */
if (fscanf(dataFile, " %lf", &inData)) {
y0 [i][j][0] = y0 [i][j][1] = y0 [i][j][2] =
y [i][j][0] = y [i][j][1] = y [i][j][2] = inData;
}
else {
fprintf(stderr,
"Error reading from data file %s\n", argv [2]
);
fclose(dataFile);
return -1;
}
}
}
fclose(dataFile);
}
else {
/* Init input */
srand48(111);
for (i = 0; i < len; i++)
for (j = 0; j < len; j++)
#if 0
/* Random data, channel-independent */
for (k = 0; k < 3; k++)
y0 [i][j][k] = y [i][j][k] = drand48();
#endif
#if 0
/* Random data, indentical for all channels */
y0 [i][j][0] = y0 [i][j][1] = y0 [i][j][2] =
y [i][j][0] = y [i][j][1] = y [i][j][2] = drand48();
#endif
#if 0 /* Monotonically increasing along axis 0 */
y0 [i][j][0] = y0 [i][j][1] = y0 [i][j][2] =
y [i][j][0] = y [i][j][1] = y [i][j][2] = i;
#endif
#if 0 /* Monotonically increasing along axis 1 */
y0 [i][j][0] = y0 [i][j][1] = y0 [i][j][2] =
y [i][j][0] = y [i][j][1] = y [i][j][2] = j;
#endif
#if 0 /* Monotonically increasing along both axes */
y0 [i][j][0] = y0 [i][j][1] = y0 [i][j][2] =
y [i][j][0] = y [i][j][1] = y [i][j][2] = i * j;
#endif
#if 1 /* Monotonically increasing by linear index */
y0 [i][j][0] = y0 [i][j][1] = y0 [i][j][2] =
y [i][j][0] = y [i][j][1] = y [i][j][2] = i * len + j;
#endif
}
#ifdef WAVELET_DBG
puts("----------------------- FWD XFORM -------------------------\n");
#endif
/* Forward xform */
if (waveletXform2(y, NULL, l)) {
fputs("Forward xform failed\n", stderr);
return -1;
}
/* Threshold coefficients; we use hard thresholding as it's easier
* to implement than soft thresholding, which requires sorting the
* coefficients.
* NOTE: y [0..1][0..1] (or just y [0][0] if WAVELET_FINALHAAR is
* defned) are omitted as they are the coarsest approximation
* coefficients. */
for (i = 0; i < len; i++)
for (j = 0; j < len; j++) {
#ifdef WAVELET_FINALHAAR
if ((i | j) && coeffThresh(y [i][j], thresh)) {
#else
if ((i > 1 || j > 1) && coeffThresh(y [i][j], thresh)) {
#endif
y [i][j][0] = y [i][j][1] = y [i][j][2] = 0;
numThresh++;
#if 0
/* Replace thresholded values with random noise in range
[-threshold, threshold] */
y [i][j][0] = y [i][j][1] = y [i][j][2] = thresh * (
2 * drand48() - 1
);
#endif
}
}
#ifdef WAVELET_DBG
/* Dump coefficients */
puts("----------------------- COEFFICIENTS -------------------------\n");
dumpCoeffs(y, NULL, l, thresh);
if (numThresh)
printf("\n%d/%d coefficients thresholded = %.1f%% compression",
numThresh, len * len, 100. * numThresh / (len * len)
);
#endif
#ifdef WAVELET_TEST_mRGBE
/* Test mRGBE coefficient encoding */
mrgbeRange.min [0] = mrgbeRange.min [1] = mrgbeRange.min [2] = HUGE;
mrgbeRange.max [0] = mrgbeRange.max [1] = mrgbeRange.max [2] = 0;
/* Find min/max coeff and init mRGBE range */
for (i = 0; i < len; i++)
for (j = 0; j < len; j++)
for (k = 0; k < 3; k++) {
inData = fabs(y [i][j][k]);
if (inData < mrgbeRange.min [k])
mrgbeRange.min [k] = inData;
if (inData > mrgbeRange.max [k])
mrgbeRange.max [k] = inData;
};
mRGBEinit(&mrgbeRange, mrgbeRange.min, mrgbeRange.max);
/* Encode coeffs to mRGBE and back, but preserve approximation
* coefficient at y [0][0] */
for (i = 0; i < len; i++)
for (j = 0; j < len; j++)
if (i | j) {
mrgbeCoeff = mRGBEencode(y [i][j], &mrgbeRange, 0);
mRGBEdecode(mrgbeCoeff, &mrgbeRange, ymrgbe [i][j]);
}
else for (k = 0; k < 3; k++)
ymrgbe [i][j][k] = y [i][j][k];
#ifdef WAVELET_DBG
/* Dump mRGBE-decoded coefficients */
puts("\n\n-------------------- mRGBE COEFFICIENTS ----------------------\n");
dumpCoeffs(y, ymrgbe, l, 0);
#endif
#endif
#ifdef WAVELET_DBG
puts("\n----------------------- INV XFORM -------------------------\n");
#endif
/* Inverse xform (also using mRGBE coeffs if enabled) */
if (waveletInvXform2(y, NULL, l)
#ifdef WAVELET_TEST_mRGBE
|| waveletInvXform2(ymrgbe, NULL, l)
#endif
) {
fputs("\nInverse xform failed\n", stderr);
return -1;
}
#ifdef WAVELET_DBG
puts("\n--------------------- ORIG vs. INV XFORM ------------------------\n");
dumpCoeffs(y0, y, l, 0);
#endif
printf("\nAvg RMSE = %.2f\n", rmseCoeffs(y0, y, l));
#ifdef WAVELET_TEST_mRGBE
#ifdef WAVELET_DBG
puts("\n------------------ ORIG vs. INV XFORM + mRGBE -------------------\n");
dumpCoeffs(y0, ymrgbe, l, 0);
#endif
printf("\nAvg RMSE with mRGBE enc = %.2f\n", rmseCoeffs(y0, ymrgbe, l));
#endif
freeWaveletMatrix(y0, l);
freeWaveletMatrix(y, l);
#ifdef WAVELET_TEST_mRGBE
freeWaveletMatrix(ymrgbe, l);
#endif
return 0;
}
#endif

Event Timeline