Page MenuHomec4science

pmapdump.c
No OneTemporary

File Metadata

Created
Wed, May 15, 00:34

pmapdump.c

#ifndef lint
static const char RCSid[] = "$Id: pmapdump.c,v 2.17 2020/08/07 01:21:13 rschregle Exp $";
#endif
/*
======================================================================
Dump photon maps as RADIANCE scene description or ASCII point list
to stdout
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
(c) Fraunhofer Institute for Solar Energy Systems,
supported by the German Research Foundation
(DFG LU-204/10-2, "Fassadenintegrierte Regelsysteme" (FARESYS))
(c) Lucerne University of Applied Sciences and Arts,
supported by the Swiss National Science Foundation
(SNSF #147053, "Daylight Redirecting Components")
(c) Tokyo University of Science,
supported by the JSPS Grants-in-Aid for Scientific Research
(KAKENHI JP19KK0115, "Three-Dimensional Light Flow")
======================================================================
$Id: pmapdump.c,v 2.17 2020/08/07 01:21:13 rschregle Exp $
*/
#include "pmap.h"
#include "pmapio.h"
#include "rtio.h"
#include "resolu.h"
#include "random.h"
#include "math.h"
/* Defaults */
/* Sphere radius as fraction of avg. intersphere dist */
/* Relative scale for sphere radius (fudge factor) */
/* Number of spheres */
#define RADCOEFF 0.05
#define RADSCALE 1.0
#define NSPHERES 10000
/* Formats for ASCII output as XYZ RGB points plus optional normals
(incident directions for volume photons) and path IDs */
#define POINTFMT "%g\t%g\t%g\t%g\t%g\t%g"
#define NORMFMT "\t%f\t%f\t%f"
#define PATHFMT "\t%u:%lu"
/* RADIANCE material and object defs for each photon type */
typedef struct {
char *mat, *obj;
} RadianceDef;
const RadianceDef radDefs [] = {
{ "void glow mat.global\n0\n0\n4 %g %g %g 0\n",
"mat.global sphere obj.global\n0\n0\n4 %g %g %g %g\n"
},
{ "void glow mat.pglobal\n0\n0\n4 %g %g %g 0\n",
"mat.pglobal sphere obj.pglobal\n0\n0\n4 %g %g %g %g\n"
},
{ "void glow mat.caustic\n0\n0\n4 %g %g %g 0\n",
"mat.caustic sphere obj.caustic\n0\n0\n4 %g %g %g %g\n"
},
{ "void glow mat.volume\n0\n0\n4 %g %g %g 0\n",
"mat.volume sphere obj.volume\n0\n0\n4 %g %g %g %g\n"
},
{ "void glow mat.direct\n0\n0\n4 %g %g %g 0\n",
"mat.direct sphere obj.direct\n0\n0\n4 %g %g %g %g\n"
},
{ "void glow mat.contrib\n0\n0\n4 %g %g %g 0\n",
"mat.contrib sphere obj.contrib\n0\n0\n4 %g %g %g %g\n"
}
};
/* Default colour codes are as follows: global = blue
precomp global = cyan
caustic = red
volume = green
direct = magenta
contrib = yellow */
const COLOR colDefs [] = {
{0.25, 0.25, 2}, {0.1, 1, 1}, {1, 0.1, 0.1},
{0.1, 1, 0.1}, {1, 0.1, 1}, {1, 1, 0.1}
};
static int setBool(char *str, unsigned pos, unsigned *var)
{
switch ((str) [pos]) {
case '\0':
*var = !*var;
break;
case 'y': case 'Y': case 't': case 'T': case '+': case '1':
*var = 1;
break;
case 'n': case 'N': case 'f': case 'F': case '-': case '0':
*var = 0;
break;
default:
return 0;
}
return 1;
}
int main (int argc, char** argv)
{
char format [MAXFMTLEN];
RREAL rad, radScale = RADSCALE, extent, dumpRatio;
unsigned arg, j, ptype, dim,
fluxCol = 0, points = 0, normals = 0, paths = 0;
long numSpheres = NSPHERES;
COLOR col = {0, 0, 0};
FILE *pmapFile;
PhotonMap pm;
PhotonPrimary pri;
Photon p;
#ifdef PMAP_OOC
char leafFname [1024];
#endif
if (argc < 2) {
puts("Dump photon maps as RADIANCE scene description "
"or ASCII point list\n"
);
printf("Usage:\n"
"%s [-a [-N][-P]] [-r radscale1] [-n num1] [-f | -c r1 g1 b1] pmap1\n"
"\t[-a [-N][-P]] [-r radscale2] [-n num2] [-f | -c r2 g2 b2] pmap2 "
" ...\n",
argv [0]
);
return 1;
}
for (arg = 1; arg < argc; arg++) {
/* Parse options */
if (argv [arg][0] == '-') {
switch (argv [arg][1]) {
case 'a':
if (!setBool(argv [arg], 2, &points))
error(USER, "invalid option syntax at -a");
break;
case 'r':
if ((radScale = atof(argv [++arg])) <= 0)
error(USER, "invalid radius scale");
break;
case 'n':
if ((numSpheres = parseMultiplier(argv [++arg])) <= 0)
error(USER, "invalid number of points/spheres");
break;
case 'N':
if (!setBool(argv [arg], 2, &normals))
error(USER, "invalid option syntax at -N");
break;
case 'P':
if (!setBool(argv [arg], 2, &paths))
error(USER, "invalid option syntax at -P");
break;
case 'c':
if (fluxCol)
error(USER, "-f and -c are mutually exclusive");
if (badarg(argc - arg - 1, &argv [arg + 1], "fff"))
error(USER, "invalid RGB colour");
for (j = 0; j < 3; j++)
col [j] = atof(argv [++arg]);
break;
case 'f':
if (intens(col) > 0)
error(USER, "-f and -c are mutually exclusive");
if (!setBool(argv [arg], 2, &fluxCol))
error(USER, "invalid option syntax at -f");
break;
default:
sprintf(errmsg, "unknown option %s", argv [arg]);
error(USER, errmsg);
return -1;
}
continue;
}
/* Check for compatible options */
if ((normals || paths) && !points)
error(USER, "option -N or -P only valid in conjuction with -a");
/* Open next photon map file */
if (!(pmapFile = fopen(argv [arg], "rb"))) {
sprintf(errmsg, "can't open %s", argv [arg]);
error(SYSTEM, errmsg);
}
/* Get format string */
strcpy(format, PMAP_FORMAT_GLOB);
if (checkheader(pmapFile, format, NULL) != 1) {
sprintf(errmsg,
"photon map file %s has unknown format %s", argv [arg], format
);
error(USER, errmsg);
}
/* Identify photon map type from format string */
for (ptype = 0;
ptype < NUM_PMAP_TYPES && strcmp(pmapFormat [ptype], format);
ptype++
);
if (!validPmapType(ptype)) {
sprintf(errmsg, "file %s contains an unknown photon map type",
argv [arg]
);
error(USER, errmsg);
}
/* Get file format version and check for compatibility */
if (strcmp(getstr(format, pmapFile), PMAP_FILEVER))
error(USER, "incompatible photon map file format");
if (!points) {
/* Dump command line as comment */
fputs("# ", stdout);
printargs(argc, argv, stdout);
fputc('\n', stdout);
}
/* Set point/sphere colour if independent of photon flux,
output RADIANCE material def if required */
if (!fluxCol) {
if (intens(col) <= 0)
copycolor(col, colDefs [ptype]);
if (!points) {
printf(radDefs [ptype].mat, col [0], col [1], col [2]);
fputc('\n', stdout);
}
}
/* Get number of photons */
pm.numPhotons = getint(sizeof(pm.numPhotons), pmapFile);
/* Skip avg photon flux */
for (j = 0; j < 3; j++)
getflt(pmapFile);
/* Get distribution extent (min & max photon positions) */
for (j = 0; j < 3; j++) {
pm.minPos [j] = getflt(pmapFile);
pm.maxPos [j] = getflt(pmapFile);
}
/* Skip centre of gravity, and avg photon dist to it */
for (j = 0; j < 4; j++)
getflt(pmapFile);
/* Sphere radius based on avg intersphere dist depending on
whether the distribution occupies a 1D line (!), a 2D plane,
or 3D volume (= sphere distrib density ^-1/d, where d is the
dimensionality of the distribution) */
for (j = 0, extent = 1.0, dim = 0; j < 3; j++) {
rad = pm.maxPos [j] - pm.minPos [j];
if (rad > FTINY) {
dim++;
extent *= rad;
}
}
rad = radScale * RADCOEFF * pow(extent / numSpheres, 1./dim);
/* Photon dump probability to satisfy target sphere count */
dumpRatio = min(1, (float)numSpheres / pm.numPhotons);
/* Skip primary rays (currently not loaded; -N only dumps index) */
pm.numPrimary = getint(sizeof(pm.numPrimary), pmapFile);
while (pm.numPrimary-- > 0) {
/* Skip source index & incident dir */
getint(sizeof(pri.srcIdx), pmapFile);
#ifdef PMAP_PRIMARYDIR
/* Skip primary incident dir */
getint(sizeof(pri.dir), pmapFile);
#endif
#ifdef PMAP_PRIMARYPOS
/* Skip primary hitpoint */
for (j = 0; j < 3; j++)
getflt(pmapFile);
#endif
}
#ifdef PMAP_OOC
/* Open leaf file with filename derived from pmap, replace pmapFile
* (which is currently the node file) */
strncpy(leafFname, argv [arg], sizeof(leafFname) - 1);
strncat(leafFname, PMAP_OOC_LEAFSUFFIX, sizeof(leafFname) - 1);
fclose(pmapFile);
if (!(pmapFile = fopen(leafFname, "rb"))) {
sprintf(errmsg, "cannot open leaf file %s", leafFname);
error(SYSTEM, errmsg);
}
#endif
/* Read photons */
while (pm.numPhotons-- > 0) {
#ifdef PMAP_OOC
/* Get entire photon record from ooC octree leaf file
!!! OOC PMAP FILES CURRENTLY DON'T USE PORTABLE I/O !!! */
if (!fread(&p, sizeof(p), 1, pmapFile)) {
sprintf(errmsg, "error reading OOC leaf file %s", leafFname);
error(SYSTEM, errmsg);
}
#else /* kd-tree */
/* Get photon position */
for (j = 0; j < 3; j++)
p.pos [j] = getflt(pmapFile);
/* Get photon normal (dumped with -N) */
for (j = 0; j < 3; j++)
p.norm [j] = getint(1, pmapFile);
/* Get photon flux */
#ifdef PMAP_FLOAT_FLUX
for (j = 0; j < 3; j++)
p.flux [j] = getflt(pmapFile);
#else
for (j = 0; j < 4; j++)
p.flux [j] = getint(1, pmapFile);
#endif
/* Get primary ray / path index (dumped with -P) */
p.primary = getint(sizeof(p.primary), pmapFile);
/* Get photons flags (includes subprocess prefix for path ID */
p.flags = getint(sizeof(p.flags), pmapFile);
#endif
/* Dump photon probabilistically acc. to target sphere count */
if (frandom() <= dumpRatio) {
if (fluxCol) {
/* Get photon flux */
getPhotonFlux(&p, col);
/* Scale by dumpRatio for energy conservation */
scalecolor(col, 1.0 / dumpRatio);
}
if (!points) {
if (fluxCol) {
/* Dump material def if variable (depends on flux) */
printf(radDefs [ptype].mat, col [0], col [1], col [2]);
fputc('\n', stdout);
}
printf(radDefs [ptype].obj, p.pos [0], p.pos [1], p.pos [2],
rad);
fputc('\n', stdout);
}
else {
/* Dump as XYZ RGB point */
printf(POINTFMT, p.pos [0], p.pos [1], p.pos [2],
col [0], col [1] ,col [2]);
if (normals)
printf(NORMFMT, p.norm [0] / 127., p.norm [1] / 127.,
p.norm [2] / 127.
);
if (paths)
printf(PATHFMT, p.proc, (unsigned long)p.primary);
fputc('\n', stdout);
}
}
if (ferror(pmapFile) || feof(pmapFile)) {
sprintf(errmsg, "error reading %s", argv [arg]);
error(USER, errmsg);
}
}
fclose(pmapFile);
/* Reset defaults for next dump */
radScale = RADSCALE;
numSpheres = NSPHERES;
col [0] = col [1] = col [2] = 0;
fluxCol = points = 0;
}
return 0;
}

Event Timeline