

swissuniversities

Teaching & Learning with Jupyter Notebooks

Jupyter Notebooks for Education @ EPFL

Accompany teaching teams and carry out in-class and in-lab evaluation studies

Evidence-based, data-driven pedagogical support

Technical Support

Develop and maintain the platform, **integrate** with other tools

How familiar are you with Jupyter Notebooks?

Learning goals

At the end of this session, you should be able to:

- ▶ Describe the **features** offered by Jupyter Notebooks and how they differ from other tools
- ▶ Analyze which elements can **foster learning** in a notebook
- ▶ Identify how notebooks can be used for teaching and learning in sciences and engineering

Agenda

25'	Learning discipline-specific content with a notebook
15'	What make notebooks effective for learning?
15′	When / for what to use notebooks?

Estimate which counterweight allows to suspend wet jeans (3kg) on the cable in the position illustrated below

https://speakup.epfl.ch/room/88899

- a. 1,5 kg
- b. 3 kg
- c. 6 kg
- d. 20 kg
- e. 50 kg or +

Let's do some physics with a notebook!

Connect to our JupyterLab platform:

► Link: https://go.epfl.ch/15sept21-nb

▶ Login: valid email address

▶ Password: Demo

Use Firefox or Safari (avoid Chromium)

Let me briefly introduce how to use a notebook

Work on the notebook:

- Activity 1: virtual lab (no programming)
- ▶ [Optional] Activity 2: computation and visualization with Python

Let's debrief the physics

Which counterweight allows to suspend wet jeans (3kg) on the cable in the position illustrated below?

And more importantly can you explain why?

https://speakup.epfl.ch/room/12989

Which features of this notebook did you find the most helpful for learning? Compare with other tools you know, in particular online textbooks and code editors.

Online brainstorming:

- ► Link: https://speakup.epfl.ch/room/36212
- ▶ 1 message = 1 feature
- Vote for features you find the most helpful for learning

What make notebooks effective for learning sciences and engineering?

Expert thinking in the form of problem solving or scientific investigation **narrative** including equations, diagrams, etc.

Code & output as interactive illustrations and activities

What make notebooks effective for learning sciences and engineering?

Benefits

Multiple representations

Interaction and manipulation of representations

Challenges

- Presentation issues (cognitive load)
- ▶ Relating representations
- Programming background and skills
- Learning from doing

How could you use notebooks in your own teaching?

In groups of 4, in breakout rooms:

- **▶** Brainstorm
- ▶ Take notes in the shared document
 - ► Link: https://go.epfl.ch/15sept21-gdoc
 - ▶ Find the slide corresponding to your breakout room number

Let's debrief in plenum!

When / for what to use notebooks?

Virtual demonstrations, live coding

Interactive textbook, worked examples

Tutorials, exercise worksheets & assignments

Lab reports, projects...

Active learning & Control by student

Is it worth it?

160 first year STEM bachelor students with minimum programming level

Notebook on inferential statistics

- Conceptual explanations with simulated sampling, statistical tests & visualizations
- ▶ Integrated questions (mini-activities) either with or without programming

2 hour autonomous online activity

MCQ pre- and post-tests

Conceptual understanding of statistics (N = 160)

Summary

Write down for yourself **3 things you have learnt** about teaching and learning with Jupyter Notebooks:

Any remaining question?

Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2), 131–152. https://doi.org/10.1016/S0360-1315(99)00029-9

Chandler, P., & Sweller, J. (1991). Cognitive Load Theory and the Format of Instruction. Cognition and Instruction, 8(4), 293–332. https://doi.org/10.1207/s1532690xci0804_2

Dewey, J. (2015). Experience and education (First free press edition 2015). Free Press.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111

Granger, B. E., & Pérez, F. (2021). Jupyter: Thinking and Storytelling With Code and Data. Computing in Science Engineering, 23(2), 7–14. https://doi.org/10.1109/MCSE.2021.3059263

Hardebolle, C., Tsoumani, G. E., Tormey, R., Jermann, P. (TBP). Impact of Jupyter notebooks on students' conceptual understanding of statistics in STEM higher education.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Knuth, D. E. (1984). Literate Programming. The Computer Journal, 27(2), 97–111. https://doi.org/10.1093/comjnl/27.2.97

Mayer, R. E. (2009). Multimedia learning, 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511811678

Mayer, R. E., & Fiorella, L. (2014). Principles for Reducing Extraneous Processing in Multimedia Learning: Coherence, Signaling, Redundancy, Spatial Contiguity, and Temporal Contiguity Principles. In R. E. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (2nd ed., pp. 279–315). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.015

Robins, A. V. (2019). Novice Programmers and Introductory Programming. In The Cambridge Handbook of Computing Education Research (p. pp 327-376). Cambridge University Press. https://doi.org/10.1017/9781108654555.013