Page MenuHomec4science

doc_spams.hbbl
No OneTemporary

File Metadata

Created
Thu, Apr 24, 05:33

doc_spams.hbbl

\begin{thebibliography}{10}
\bibitem{beck}
A.~Beck and M.~Teboulle.
\newblock {A fast iterative shrinkage-thresholding algorithm for linear inverse
problems}.
\newblock {\em SIAM Journal on Imaging Sciences}, 2(1):183--202, 2009.
\bibitem{borwein}
J.~M. Borwein and A.~S. Lewis.
\newblock {\em Convex analysis and nonlinear optimization: {T}heory and
examples}.
\newblock Springer, 2006.
\bibitem{brucker}
P.~Brucker.
\newblock An {O}(n) algorithm for quadratic knapsack problems.
\newblock 3:163--166, 1984.
\bibitem{candes4}
E.~J. Cand\`es, M.~Wakin, and S.~Boyd.
\newblock Enhancing sparsity by reweighted l1 minimization.
\newblock {\em Journal of Fourier Analysis and Applications}, 14:877--905,
2008.
\bibitem{cherkassky}
B.~V. Cherkassky and A.~V. Goldberg.
\newblock On implementing the push-relabel method for the maximum flow problem.
\newblock {\em Algorithmica}, 19(4):390--410, 1997.
\bibitem{cotter}
S.~F. Cotter, J.~Adler, B.~Rao, and K.~Kreutz-Delgado.
\newblock Forward sequential algorithms for best basis selection.
\newblock In {\em IEEE Proceedings of Vision Image and Signal Processing},
pages 235--244, 1999.
\bibitem{duchi}
J.~Duchi, S.~Shalev-Shwartz, Y.~Singer, and T.~Chandra.
\newblock Efficient projections onto the $\ell_1$-ball for learning in high
dimensions.
\newblock In {\em Proceedings of the International Conference on Machine
Learning (ICML)}, 2008.
\bibitem{efron}
B.~Efron, T.~Hastie, I.~Johnstone, and R.~Tibshirani.
\newblock Least angle regression.
\newblock {\em Annals of statistics}, 32(2):407--499, 2004.
\bibitem{friedman}
J.~Friedman, T.~Hastie, H.~H\"olfling, and R.~Tibshirani.
\newblock Pathwise coordinate optimization.
\newblock {\em Annals of statistics}, 1(2):302--332, 2007.
\bibitem{fu}
W.~J. Fu.
\newblock Penalized regressions: The bridge versus the {L}asso.
\newblock {\em Journal of computational and graphical statistics}, 7:397--416,
1998.
\bibitem{goldberg}
A.~V. Goldberg and R.~E. Tarjan.
\newblock A new approach to the maximum flow problem.
\newblock In {\em Proc. of ACM Symposium on Theory of Computing}, pages
136--146, 1986.
\bibitem{hoyer}
P.~O. Hoyer.
\newblock Non-negative sparse coding.
\newblock In {\em Proc. IEEE Workshop on Neural Networks for Signal
Processing}, 2002.
\bibitem{jenatton3}
R.~Jenatton, J.~Mairal, G.~Obozinski, and F.~Bach.
\newblock Proximal methods for sparse hierarchical dictionary learning.
\newblock In {\em Proceedings of the International Conference on Machine
Learning (ICML)}, 2010.
\bibitem{jenatton4}
R.~Jenatton, J.~Mairal, G.~Obozinski, and F.~Bach.
\newblock Proximal methods for hierarchical sparse coding.
\newblock {\em Journal of Machine Learning Research}, 12:2297--2334, 2011.
\bibitem{lee2}
D.~D. Lee and H.~S. Seung.
\newblock Algorithms for non-negative matrix factorization.
\newblock In {\em Advances in Neural Information Processing Systems}, 2001.
\bibitem{maculan}
N.~Maculan and J.~R. G.~Galdino de~Paula.
\newblock A linear-time median-finding algorithm for projecting a vector on the
simplex of {R}n.
\newblock {\em Operations research letters}, 8(4):219--222, 1989.
\bibitem{mairal11}
J.~Mairal.
\newblock {\em Sparse coding for machine learning, image processing and
computer vision}.
\newblock PhD thesis, Ecole Normale Sup\'erieure, Cachan, 2010.
\bibitem{mairal7}
J.~Mairal, F.~Bach, J.~Ponce, and G.~Sapiro.
\newblock Online dictionary learning for sparse coding.
\newblock In {\em Proceedings of the International Conference on Machine
Learning (ICML)}, 2009.
\bibitem{mairal9}
J.~Mairal, F.~Bach, J.~Ponce, and G.~Sapiro.
\newblock Online learning for matrix factorization and sparse coding.
\newblock {\em Journal of Machine Learning Research}, 11:19--60, 2010.
\bibitem{mairal10}
J.~Mairal, R.~Jenatton, G.~Obozinski, and F.~Bach.
\newblock Network flow algorithms for structured sparsity.
\newblock In {\em Advances in Neural Information Processing Systems}, 2010.
\bibitem{mallat4}
S.~Mallat and Z.~Zhang.
\newblock Matching pursuit in a time-frequency dictionary.
\newblock {\em IEEE Transactions on Signal Processing}, 41(12):3397--3415,
1993.
\bibitem{meinshausen}
N.~Meinshausen and P.~Buehlmann.
\newblock Stability selection.
\newblock Technical report.
\newblock ArXiv:0809.2932.
\bibitem{obozinski}
G.~Obozinski, B.~Taskar, and M.I. Jordan.
\newblock {Joint covariate selection and joint subspace selection for multiple
classification problems}.
\newblock {\em Statistics and Computing}, pages 1--22.
\bibitem{sprechmann}
P.~Sprechmann, I.~Ramirez, G.~Sapiro, and Y.~C. Eldar.
\newblock Collaborative hierarchical sparse modeling.
\newblock Technical report, 2010.
\newblock Preprint arXiv:1003.0400v1.
\bibitem{tibshirani2}
R.~Tibshirani, M.~Saunders, S.~Rosset, J.~Zhu, and K.~Knight.
\newblock Sparsity and smoothness via the fused lasso.
\newblock {\em Journal of the Royal Statistical Society Series B},
67(1):91--108, 2005.
\bibitem{tropp3}
J.~A. Tropp.
\newblock Algorithms for simultaneous sparse approximation. part ii: Convex
relaxation.
\newblock {\em Signal Processing, special issue "Sparse approximations in
signal and image processing"}, 86:589--602, April 2006.
\bibitem{tropp2}
J.~A. Tropp, A.~C. Gilbert, and M.~J. Strauss.
\newblock Algorithms for simultaneous sparse approximation. part i: Greedy
pursuit.
\newblock {\em Signal Processing, special issue "sparse approximations in
signal and image processing"}, 86:572--588, April 2006.
\bibitem{weisberg}
S.~Weisberg.
\newblock {\em Applied Linear Regression}.
\newblock Wiley, New York, 1980.
\bibitem{wu}
T.~T. Wu and K.~Lange.
\newblock Coordinate descent algorithms for {L}asso penalized regression.
\newblock {\em Annals of Applied Statistics}, 2(1):224--244, 2008.
\bibitem{yuan}
M.~Yuan and Y.~Lin.
\newblock Model selection and estimation in regression with grouped variables.
\newblock {\em Journal of the Royal Statistical Society Series B}, 68:49--67,
2006.
\bibitem{zou}
H.~Zou and T.~Hastie.
\newblock Regularization and variable selection via the elastic net.
\newblock {\em Journal of the Royal Statistical Society Series B},
67(2):301--320, 2005.
\end{thebibliography}

Event Timeline