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1. INTRODUCTION

Magnetic resonance imaging (MRI) has opened a number of
avenues for the study of the brain. At the structural level, dif-
fusion MRI enables to resolve the physical connectivity that
exists between different regions. Viewed from the prism of
graph analysis, this information is embedded in an adjacency
matrix, which can then be decomposed into a set of canonical
structural elements, commonly termed the eigenmodes.

In parallel, functional MRI offers a window on brain ac-
tivity over time, and on its dynamics at rest or upon cognitive
challenge. There is an exquisite relationship between brain
function and the underlying structural scaffold; for this rea-
son, bimodal analytical approaches that can combine those
two pieces of information are particularly tailored, and an
emerging topic of interest.

In particular, graph signal processing (GSP) has recently
gained momentum for this purpose. In this framework, func-
tional information is regarded as temporal signals on a graph
defined from structural measurements, and viewed as a linear
combination of eigenmodes. This has the double advantage
of enabling the study of structure/function relationships, and
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of permitting a wide set of signal processing operations in the
spectral domain to improve the quality of functional signals.

In such approaches, a similar importance is typically as-
signed to each brain region (i.e., each node of the studied net-
work) at the decomposition stage. However, in some settings,
it may be desirable to enhance the accuracy of the analysis
on a subset of particularly important areas (for example, the
brain regions expected to respond to a given paradigm). At the
same time, some flexibility is also desired when it comes to
defining this subset, so that rough prior knowledge be enough
information to provide.

Here, we show how this can be achieved through a gen-
eralised decomposition into Slepian vectors. On simulated
data, we show that if provided with a set of nodes of inter-
est, noisy functional signals can be recovered more accurately
within this set compared to a standard decomposition. In ad-
dition, we show how error estimates are robust to changes in
the selected subset. On a real data example, we exemplify the
potential of Slepians to reveal subtler, localised interaction
patterns in the context of a visual stimulation task.

2. METHODS

2.1. Graph signal processing basics

Let a graph G = (V, W) characterised by the set of N
nodes V, linked as described by the symmetrical adjacency
matrix W € RM*N_ In the brain application consid-
ered here, w; ; will be large if brain regions ¢ and j are
strongly physically connected. The resulting Laplacian ma-
trix L = D — W, where D is the diagonal degree ma-
trix with d; ; = > ; Wig» admits an eigendecomposition as
L = VAV'. The matrix V = [vq|va|...|vn] contains the
eigenmodes as its columns, arranged in ascending eigenvalue
order \;y < Ay < ... < Ay. They satisfy v;(rvl = k.
Because \;, = vy | Lvy = > i Wij([ve)i — [vg];)?, eigen-
modes of smaller eigenvalues will represent low frequency
structural patterns on the graph (i.e., for which strongly con-
nected nodes show similar values), while eigenmodes of
larger eigenvalues will denote less organised patterns with
respect to the graph structure.



From this description, a signal x € R™*! can conve-
niently be expressed in the graph domain as X = V " x, which
is known as the graph Fourier transform; conversely, we also
have x = VX. Each element of X then represents the strength
with which an eigenmode is contributing to the signal at hand.
In addition, note that the eigenmodes are also solutions to
the Laplacian embedding problem, where the goal is to find a
mapping of the graph nodes on a line so that connected ones
stay as close as possible, that is, to find x as:

x* = argminx ' Lx = argminx' VAV "x, (1)

withx'x=1landx'1=0.

2.2. Slepian vectors

The goal is to derive an alternative set of basis vectors, un-
der the constraint that their energy should be localised within
a predefined subset of nodes S. Futher, we want this alter-
native set to be derived from a bandwidth-limited subset of
original eigenvectors, with dimension KX < N. To highlight
the selected nodes, we define M as the diagonal matrix with
m;; = 1 if a node is included, and O otherwise. Further, we
define Vp € RV*K as the trimmed set of eigenmodes.

If we denote the new set by the matrix S = [s1]sz2]. .. [sm],
and using the equality A = A2V TVA!/2, Slepian vec-
tors sx, K = 1,...,M can be seen as the solutions of a
generalised Laplacian embedding formulation:

s* = argmins ' VAY/2VTSVA/2V T, )

Indeed, we retrieve Equation (1) if Vpr = Vand S = L

3. RESULTS

3.1. Simulated data

Quantification of optimal retrieval error for signals corrupted
with added noise.

3.2. Real fMRI data

HCP example subject on which W and X were computed;
visual task, comparison in our subset of interest between GFT
and Slepians.

4. DISCUSSION

This is an example reference [2].
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Fig. 1. Example of placing a figure with experimental results.
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