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ABSTRACT
Neuroimaging techniques revealed that the brain function exhibits
coordinated patterns that can also be reflected in the anatomical
structure. From a data processing point of view, this finding can
be harnassed to constrain the dynamics of functional time-series to
the underlying structural pathways while performing basic opera-
tions such as filtering. In this work, following recent advances in
Graph signal processing, we introduce linear Slepian estimators to
uncover localised functional brain interactions. The method projects
the functional Magnetic Resonance Imaging (fMRI) signal onto a
collection of Slepian vectors that are defined on a graph extracted,
for example, from structural and diffusion data. The Slepian decom-
position allows an optimal multi-bandwidth description of signals
that are maximally concentrated within a subset of nodes as it is
often the case for neural activity. The estimator, itself, is constructed
by keeping only the Slepian coefficents that are within a certain
spatial frequency range. Through some numerical experiments on
simulated data, we show the advantages of using this technique over
classical Laplacian and localized Laplacian filtering. To comple-
ment these results, we present an illustration on real data from the
Human Connectome project (HCP) that demonstrate the potential of
Slepians at retrieving localised interaction patterns in the context of
a visual stimulation task.

Index Terms— Graph Fourier transform, Slepians, Graph
signal processing

1. INTRODUCTION

Magnetic resonance imaging (MRI) has opened a number of
avenues for the study of the brain. At the structural level, dif-
fusion MRI enables to resolve the physical connectivity that
exists between different regions. Viewed from the prism of
graph analysis [1], this information is embedded in an adja-
cency matrix, which can then be decomposed into a set of
canonical structural elements, commonly termed the eigen-
modes.

In parallel, functional MRI offers a window on brain ac-
tivity over time, and on its dynamics at rest or upon cog-
nitive challenge. There is an exquisite relationship between
brain function and the underlying structural scaffold [2]; for
this reason, bimodal analytical approaches that can combine
those two pieces of information are particularly tailored, and
an emerging topic of interest.

In particular, graph signal processing (GSP) [3] has re-
cently gained momentum for this purpose [4]. In this frame-
work, functional information is regarded as temporal signals
on a graph defined from structural measurements, and viewed
as a linear combination of eigenmodes. This has the dou-
ble advantage of enabling the study of structure/function re-
lationships, and of permitting a wide set of signal processing
operations in the spectral domain to improve the quality of
functional signals.

In such approaches, a similar importance is typically as-
signed to each brain region (i.e., each node of the studied net-
work) at the decomposition stage. However, in some settings,
it may be desirable to enhance the accuracy of the analysis
on a subset of particularly important areas (for example, the
brain regions expected to respond to a given paradigm). At the
same time, some flexibility is also desired when it comes to
defining this subset, so that rough prior knowledge be enough
information to provide.

Here, we show how this can be achieved through a gener-
alised decomposition into Slepian vectors [5]. On simulated
data, we show that if provided with a set of nodes of inter-
est, noisy functional signals can be recovered more accurately
within this set compared to a standard decomposition. In ad-
dition, we show how error estimates are robust to changes in
the selected subset. On a real data example, we exemplify the
potential of Slepians to reveal subtler, localised interaction
patterns in the context of a visual stimulation task.

2. METHODS

2.1. Graph signal processing basics

Let a graph G = (V,W) characterised by the set of N nodes
V , linked as described by the symmetrical adjacency matrix
W ∈ RN×N . In the brain application considered here, wi,j
will be large if brain regions i and j are strongly physically
connected. The resulting Laplacian matrix admits an eigende-
composition as L = VΛV> [3], with V = [v1|v2| . . . |vN]
containing the eigenmodes as its columns, arranged in as-
cending eigenvalue order λ1 < λ2 < . . . < λN . Because
λk = vk

>Lvk =
∑
i 6=jWi,j([vk]i − [vk]j)

2, eigenmodes
of smaller eigenvalues will represent low frequency structural



patterns on the graph (i.e., for which strongly connected nodes
show similar values), while eigenmodes of larger eigenvalues
will denote less organised patterns with respect to the graph
structure.

From this description, a signal x ∈ RN×1 can conve-
niently be expressed in the graph domain as x̂ = V>x, which
is known as the graph Fourier transform (GFT) [6]; con-
versely, we also have x = Vx̂. Each element of x̂ then rep-
resents the strength with which an eigenmode is contributing
to the signal at hand.

In addition, note that the eigenmodes are also solutions to
the Laplacian embedding problem, where the goal is to find a
mapping of the graph nodes on a line so that connected ones
stay as close as possible, that is, to find x as:

x∗ = argmin
x

x>Lx = argmin
x

x>VΛV>x, (1)

with x>x = 1 and x>1 = 0 [7].

2.2. Slepian vectors

The goal is to derive an alternative set of basis vectors, un-
der the constraints that (1) their energy should be localised
within a predefined subset of nodes S , and (2) they should be
derived from a bandwidth-limited subset of original eigenvec-
tors, with dimension K ≤ N [8]. To highlight the selected
nodes, we define M as the diagonal matrix with mi,i = 1 if
a node is selected in the subset, and 0 otherwise. Further, we
define VT ∈ RN×K as the trimmed set of eigenmodes.

The concentration to optimise is given by µ = x̂>Cx̂
x̂>x̂

,
with C = V>TMVT. For the analogy with the classical
eigenmodes, where λi represents a spatial frequency on the
graph, we consider an alternative formulation where, using
the equality Λ = Λ1/2V>VΛ1/2, the solution vectors sk,
k = 1, . . . ,K satisfy a generalised Laplacian embedding for-
mulation [8]:

ŝ∗ = argmin
ŝ

ŝ>ΛT
1/2CΛT

1/2ŝ. (2)

The local frequency within S is denoted ξi, and the matrix
S = [s1|s2| . . . |sK] contains the solution vectors, arranged in
ascending local frequency (ξ1 < ξ2 < . . . < ξM ). Note that
ξi will be low either if si is not concentrated within S, or if it
displays a low local frequency.

2.3. Linear Slepian estimators

Let X ∈ RN×T be a signal of length T defined on each node
of the graph. At any given time point t, the current value of
the signal, Xt, can be projected onto the Slepian basis formed
by the collection of vectors sk, k = 1, . . . ,K.

S>Xt =< Xt, si >i=1,...,K . (3)

Now, assuming that Xt is composed of a smooth component
(i.e., the signal of interest) and of a noise component of larger
frequency, it is possible to truncate the projection S>Xt up to
a certain range without loss of information, by discarding the
Slepian vector coefficients associated to the largest ξi. At the
same time, one can also focus on the subset S by discarding
the non-concentrated Slepian vectors (µi < ε). Formally, we
retrieve the output Y

(ξ̄)
t ∈ RN×1 as:

Y
(ξ̄)
t = SH(ξ̄)S>Xt, (4)

where ξ̄ is the cut-off frequency and H(ξ̄) is a diagonal matrix
with H(ξ̄)

i,i = 1 if ξi < ξ̄ and µi > ε, and 0 otherwise. We call
this estimator linear in analogy with classical estimators on
regular domains (DCT [9], wavelets [10]), as it depends only
on the cut-off frequency and does not involve any point-wise
thresholding procedure.

2.4. Evaluations on simulated data

We examined how well a simulated ground truth signal X ∈
RN×T on G, corrupted with noise, could be retrieved on a
subset of nodes S through graph filtering. We considered
simulated modular graphs of N = 200 nodes, with 4 com-
munities, a minimal community number of 40 nodes, and
world density 1

N . We created simulated time courses of T =
900 time points, where the largest graph community was se-
lected as S. Within S, we created two independent temporal
paradigms of 180 time points, each occurring in half of the
subset nodes. Each of the other 3 communities was also as-
signed a separate paradigm time course (see Figure 1A).

To add noise on top of the ground truth time courses, at
each time point, a random subset of nr nodes was chosen, and
corrupted with noise of intensity I ∼ N (0, σ2

r) (see Figure
1B). We assessed the ability of (1) a classical basis of eigen-
modes (GFT), (2) a localised eigenmodes decomposition on
the subset S (LGFT), and (3) a Slepian basis focused on the
same subset (SLEP) to retrieve the ground truth. We probed
ranges of nr ∈ [0 : 20 : 200] and σr ∈ [0 : 0.5 : 4], simulat-
ing 20 datasets in each case. We computed the average mean
squared error (MSE) across all nodes within S for all possible
filtering cutoffs, and selected the minimal MSE as our error
measure.

In addition, we compared the LGFT and SLEP decom-
positions in their sensitivity to an imperfect subset selection,
where for each of 10 simulated trial, Si (|Si| = 0.2|S|) was
picked as the subset of interest, and the mean error across
those trials was considered.

2.5. Exploratory application to real fMRI data

To extend our observations on simulated data to the fMRI
setting, we consider one subject (ID:100307) from the Hu-
man Connectome Project initiative [11], for which we down-
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Fig. 1. (A) Simulated paradigm for all nodes (top to bottom) across time (left to right). Light gray denotes activation, and S
reflects the selected subset. (B) In low noise (top) or hight noise (bottom) cases, example signals generated at different moments
from the paradigm, on a simulated graph. (C) For GFT (left), LGFT (middle) or SLEP (right) cases, evolution of median MSE
for increasing noise levels.

loaded diffusion MRI, structural MRI and task fMRI (Work-
ing Memory) data. We created W from the structural and
diffusion data, using the MRtrix toolbox (multi-shell multi-
tissue response function estimation, spherical deconvolution,
tractogram generation with 107 output streamlines between
838 regions from the Craddock atlas [12]).

The considered working memory task fMRI recording in-
cluded blocks of fixation, and of image presentation (faces,
places, tools or body parts), in 0-back or 2-back fashion [13].
Here, we focused on the visual aspect of the paradigm, and se-
lected a subset S of 3 nodes from the occipital brain (see Fig-
ure 2A). We generated Slepian graph coefficients at a band-
width of 180, and truncated them with ε = 10−2, yielding 2
remaining coefficients at each time point. We compared this

two-dimensional representation of functional brain activity to
the one achieved from the coefficients of the 2 GFT or LGFT
eigenmodes of lowest frequency.

3. RESULTS

3.1. Evaluations on simulated data

Across trials, MSE increased with larger nr and larger σr,
for all three evaluated methods (GFT, LGFT, SLEP; Figure
1C). Performance was equivalent at low noise levels, but in
the noisiest cases (top right part of the matrices), a better
ground truth recovery was achieved with Slepians. For in-
stance, for nr = 200 and σr = 4, median MSE values were
MSEGFT = 0.26, MSELGFT = 0.36, and MSESLEP =
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Fig. 2. (A) Brain depiction of the considered set of nodes, with the selected subset S highlighted in red. (B) For the GFT
(left), LGFT (middle) and SLEP (right) cases, evolution over time of the signal projected on the two lowest frequency eigen-
modes/Slepian vectors. Colour coding reflects the type of stimulus presented at each time point (note that the paradigm regressor
was convolved with a hemodynamic response function estimate to retrieve an fMRI-compatible timing).

0.2.
In addition, the LGFT approach was less robust than the

SLEP one to an incomplete S selection: for example, for still
moderate noise levels of nr = 100 and σr = 2, median MSE
in the LGFT case was 0.29 (compared to 0.13 for a full subset
selection), whereas it stayed at 0.14 in the SLEP case (against
0.13 for a full subset selection).

3.2. Exploratory application to real fMRI data

Plotting the spectral coefficients linked to the 2 lowest fre-
quency GFT eigenmodes (Figure 2B, left plot), no clear dis-
crimination could be achieved between the moments when
different types of visual stimuli were presented. In the lo-
calised GFT case (middle plot), moments of fixation (dark
blue) could be segregated from visual presentation. In the
Slepians case (right plot), on top of distinguishing fixation
from visual presentation, the presentation of body parts or
faces (light blue or green data points) could be separated from
moments when places or tools (orange or red data points)
were shown.

4. DISCUSSION

GSP tools are gaining a lot of interest in the neuroimaging
community, but the strong noise levels at play in the func-
tional data at hand complicate their use. In this work, we
demonstrated how a projection onto a collection of vectors
called Slepians opposition to many research fields where GSP
finds its use, brain gra

GSP tools are gaining a lot of interest in the neuroimag-
ing community, but the strong noise levels at play in the func-
tional data at hand complicate their use.

Discuss the fact that some types of noise (here, several
nodes spanning the whole network activate together, but not
following the graph structure; i.e., two very close nodes in the
graph are equally likely to activate compared to two remote
nodes) can impede the classical GSP tools. Slepians enable
to focus the analysis on a limited subpart of the graph, and so,
to an extent, get rid of this noise effect.

Discuss the fact that at the same time, the bandwidth pa-
rameter enables more robustness to imperfect node selection,
which is nice because in neuroscience, we do not necessar-
ily know all interesting foci of activation beforehand. The
thing is that the lower bandwidth enables us to use structural
information from the graph, in order to facilitate functional
data processing. In itself, this is a really cool way to combine
modalities, which is also an emerging trend.

Discuss possible follow-up extensions of the framework
(e.g., have a set of nodes that we want to be active, and another
that we want to be deactive, when defining M. If possible,
find other nice applications of those tools...
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