Page MenuHomec4science

util.py
No OneTemporary

File Metadata

Created
Wed, Nov 13, 01:54
import sys
sys.path.insert(0, '../src/envipath-python/enviPath_python/')
sys.path.insert(0, '../src/envipath-python/')
from enviPath_python.enviPath import *
from enviPath_python.enviPath import *
def load_input(input_path):
"""
Load input smiles and names
:param input_path: path to input file
:return: list of dictionaries containing smiles and name of input compounds
"""
f = open(input_path)
input_list = []
for line in f:
if line not in ['', '\n']:
line_split = line.rstrip().split('\t')
input_list.append({'smiles': line_split[0], 'name': line_split[1]})
return input_list
def upload_envipath_pathway(eP, result, pkg):
"""
Upload resulting pathway dictionary to enviPath
:param eP: enviPath object
:param result: result list of dictionaries from pathway prediction
:param pkg: package object where results should be uploaded
:return: dictionary {'name': pathway name, 'id': URI of pathway}
"""
assert 'anonymous' not in str(eP.who_am_i()), 'Upload not possible when not logged in'
source = result[0]
pkg.add_compound(smiles=source['smiles'],name=source['name'])
pathway = Pathway.create(pkg, smiles=source['smiles'], name=source['name'], root_node_only=True)
# Add the observed degradation product as a second node
for TP in result[1:]:
# print('adding to pw:', TP['name'], TP['smiles'], TP['generation'], TP['parent_smiles'])
pathway.add_node(smiles=TP['smiles'], name=TP['name'], depth=TP['generation'])
# check for the case of multiple parents:
for parent in TP['parent_smiles'].split(','):
pathway.add_node(smiles=parent)
pathway.add_edge(smirks='{}>>{}'.format(parent, TP['smiles']))
print('New pathway created for {}: {}'.format(source['name'], pathway.id))
return {'name': source['name'], 'id': pathway.id}
def expand_smiles(smiles, rr):
"""
Get all potential TPs by applying enviPath biotransformation and relative reasoning rules
:param smiles: input smiles
:param rr: relative reasoning object
:return: list of dictionaries for each predicted TP: {'smiles': smiles,
'name': rule name,
'probability': relative reasoning probability}
"""
res = rr.classify_smiles(smiles)
# sort by probability
res.sort(reverse=True, key=lambda x: x['probability'])
return res
def clean_result(result_dict):
"""
Sorts TP list for output
:param result_dict: result dictionary
:return: sorted and named list of TPs
"""
result_list = list(result_dict.values())
result_list.sort(reverse=True, key=lambda x: x['combined_probability'])
result_list.sort(key=lambda x: x['generation']) # make sure that source compound is first
# get name of source compound
source_name = result_list[0]['name']
source_smiles = result_list[0]['smiles']
TP_count = 0
D = {source_smiles: source_name}
new_result_list = []
new_result_list.append(result_list[0])
for res in result_list[1:]:
new_res = res
TP_count += 1
new_name = 'TP_{}_{}'.format(source_name, TP_count)
new_res['name'] = new_name
multiple_parents = res['parent_smiles'].split(',')
for p in multiple_parents:
new_res['parent_name'] = D[p]
D[res['smiles']] = new_name
new_result_list.append(new_res)
return new_result_list
def result_to_compound_dict(result):
"""
Translates result from enviPath node expansion into a compound dictionary
:param result: list of dictionaries with predicted TP information
:return: dictionary of TPs
"""
compound_dict = {}
for r in result:
probability = float(r['probability'])
for product_smiles in r['products']:
if product_smiles not in compound_dict.keys():
compound_dict[product_smiles] = {'rules' : r['name'], 'rule_IDs': r['id'], 'probability': probability, 'smiles': product_smiles}
else:
# check if there's a rule with better probability
if probability > compound_dict[product_smiles]['probability']:
# update probability and rules associated to this probability
compound_dict[product_smiles]['probability'] = probability
compound_dict[product_smiles]['rules'] = r['name']
compound_dict[product_smiles]['rule_IDs'] = r['id']
return compound_dict
def update_compound_entry(compound_entry, this_combined_probability, rules, rule_IDs, this_generation, parent_smiles,
size_metric, size_value):
"""
Update the compound entry with new information
:param compound_entry: dictionary of compound information
:param this_combined_probability: new combined probability
:param rules: new rules
:param rule_IDs: new rule IDs
:param this_generation: new generation
:param parent_smiles: new parent compound
:param parent_compound: new parent compound
:param size_metric: size metric
:param size_value: new size value
:return: updated compound entry
"""
if compound_entry['combined_probability'] < this_combined_probability:
compound_entry['combined_probability'] = this_combined_probability
compound_entry['rules'] = rules
compound_entry['rule_IDs'] = rule_IDs
compound_entry['generation'] = this_generation
compound_entry['parent_smiles'] = parent_smiles
compound_entry[size_metric] = size_value
elif compound_entry['combined_probability'] == this_combined_probability:
compound_entry['rules'] += ',{}'.format(rules)
compound_entry['rule_IDs'] += ',{}'.format(rule_IDs)
compound_entry['parent_smiles'] += ',{}'.format(parent_smiles)
return compound_entry

Event Timeline