
Computational Physics III: Report 2

Linear systems solving and diagonalization methods
Due on April 30, 2020

April 27, 2020

Raffaele Ancarola

1

Raffaele Ancarola Computational Physics III : Report 2

Contents

Introduction 3

Solving a system of linear equations 3

Gauss elimination algorithm . 3

LU decomposition . 3

Diagonalization: introduction . 3

Problem 1 4

(1) LU decomposition implementation . 4

Partial pivoting . 4

(1.1) Solving a linear system . 5

(1.3) Decomposition of a matrix . 5

(2) Puzzle board game . 5

(3) Helicopter power formula: dimensional analysis . 5

(3.1) Approaching the problem . 6

(3.2) + (3.3), Adding a constraint . 6

The eigenvalue problem and diagonalization 6

Power method . 6

Jacobi method . 7

Problem 2 7

(1) Power iteration methods implementation . 7

(2) Eigenmodes of a vibrating string . 8

(2.1) Formalization of the problem . 8

(2.2) Implementation . 8

(2.3) + (2.4), Find the first eigenvalues . 8

(3) Jacobi method implementation . 10

(3.1) + (3.2) Comparing classic and cyclic jacobi methods . 10

(3.3) Applying the axis aligned rotation matrix J . 11

(4) Landau levels in a square-lattice model . 12

Conclusion 13

Appendix: matlab codes 13

Page 2 of 15

Raffaele Ancarola Computational Physics III : Report 2

Introduction

Solving a system of linear equations

A linear problem could be defined as a system of which the describing equations are all linear. Furthermore,

a linear system is said to be determined if the number of equations N is finite and it corresponds to the

number of the unknowns. Such a system defined on a field K takes the advantage to be written in a matrix

form:

A · ~x = ~b (1)

where A is the describing matrix and ~b ∈ KN the affine component of the system, or the components

which are independent with respect to the unknows contained in ~x. Because the system is determined, the

condition that A must satisfy is the inversibility, then A ∈ GL(N) and a solving the system means to find

~x ∈ KN such that eq. (1) is satisfied. There exist various approaches that can reach this aptempt, in this

report three cases will be analysed: the gauss elimination, the LU decomposition and the diagonalisation.

Gauss elimination algorithm

The Gauss elimination bases to the fact that any square matrix can be decomposed into a finite sequence

of elementary operations {Pk}1≤k≤M ,M ∈ N∗. There are basically three kinds of them:

• Multipling of a row by a scalar factor λ ∈ K

• Switching a row with another

• Adding a row with a multiple of another

The purpose of this method is to reduce the involved matrix A into the identity applying the same

operations to the vector ~b, as shown in the equation (2).

A = P1 · ... · PM =⇒ ~x = P−1M · ... · P−11 ·~b , M ∈ N∗ (2)

LU decomposition

The LU decomposition is not a direct method which solves a linear system, but it allows to simplify the

resolution by decomposing the A matrix into a lower-triangular matrix L and an upper-triangular matrix

U . The simplification is due to the major facility to invert the two matrices precedently presented. Once A

is decomposed, the process is straigh-forward:

A · ~x = L · U · ~x = ~b

L · ~y = ~b (3)

U · ~x = ~y (4)

Both equations (3) and (4) can be solved sequentially using the Gauss elimination method.

Diagonalization: introduction

In case A is a symmetric matrix, the spectral theorem [] states that such a matrix is equivalent (definition

of equivalence here: []) to a diagonal matrix D, where the transition matrix P is unitary (P−1 = P̄T), then:

A = P ·D · P̄T =⇒ ~x = P ·D−1 · P̄T ·~b (5)

Generally diagonalization is not used to solve general systems of linear equations, but it’s convenient

when the problem is related to find the eigen-base related to the eigen-values.

Page 3 of 15

Raffaele Ancarola Computational Physics III : Report 2

Problem 1

(1) LU decomposition implementation

This algorithm separes the input matrix A into a lower triangular L and an upper triangular U , garan-

teeing that A = L · U . Neverthless, not all the invertible square matrices are purely LU decomposable,

then it may happen that the output can result ill formed. The code (1) shows at line 23 that a division

by the diagonal values is performed, causing eventually a singularity. A possible work-around is to

apply the partial pivoting technique in order to swap the problematic lines. In listing (1) is shown a full

implementation with partial pivoting.

Listing 1: LU decomposition implementation with partial pivoting

1 function [L, U, P] = lu_decomposition(A)

2 [Ni, Nj] = size(A);

3 assert(Ni == Nj, "The input must be diagonal");

4

5 N = Nj;

6 assert(N > 0, "The input must non empty");

7

8 L = eye(N); % if zeros doesn’t give the same result

9 U = A; % if zeros doesn’t give the same result

10 P = eye(N); % identity matrix

11

12 for k=1:(N-1)

13 % pivoting section

14 [Amax,r] = max(abs(U(k:N, k)));

15 r = r + k - 1;

16 % swap rows if it’s not the identity swap operation

17 U([k r],:) = U([r k],:);

18 P([k r],:) = P([r k],:);

19 L([k r], 1:k-1) = L([r k], 1:k-1);

20

21 % computing LU

22 for i=(k+1):N

23 L(i,k) = U(i,k) / U(k,k);

24 U(i,:) = U(i,:) - L(i,k) * U(k,:);

25 end

26 end

27 end

Partial pivoting

The LU decomposition algorithm (presented below in exercise 1.1) can easily run into singularities,

especially when A presents zeros as diagonal terms. In order to avoid divergent results, it would better

select the rows of which element is not zero in the requested columns and swap them with the current

one. More precisely, at the k-th step, select the r-th row such that Ark = max
k≤i≤N

|Aik|, then swap rows

at the position k and r. If the pivoting is applied the resulting LU decomposition won’t be anymore like

it was defined in the previous section, but a correction to equation (3) must be applied:

P ·A = L · U =⇒ L · ~y = P ·~b (6)

where P is the orthogonal matrix that accumulated all row switching applications. The rest of the

solving method remains unchanged.

Problem 1 [(1) LU decomposition implementation] continued on next page. . . Page 4 of 15

Raffaele Ancarola Computational Physics III : Report 2

(1.1) Solving a linear system

A linear system can be solved applying the LU decomposition and then a gauss elimination process, as

shown in the equations (6) and (4).

For example, the system in equation (7) is determined and can be solved using the solve.m script.

Addictionally the test solve.m script compares with the matlab x = A \ b verifying that the so-

lution ~x is given correctly by the solve.m script.


2x1 + x2 − x3 + 5x4 = 13

x1 + 2x2 + 3x3 − x4 = 37

x1 + x3 + 6x4 = 30

x1 + 3x2 − x3 + 5x4 = 19

=⇒ A =


2 1 −1 5

1 2 3 −1

1 0 1 6

1 3 −1 5

 , ~b =


13

37

30

19

 =⇒ ~x = A−1·~b =


2

4

10

3


(7)

(1.3) Decomposition of a matrix

The example taken in equation (8) is a problematic case where a pure LU decomposition doesn’t exist.

A necessary and sufficient condition to the existance of a pure LU decomposition is that the matrix must

be gauss reductible without any row exchange (ref. [?]), that’s why if such a decomposition exists, then

pivoting matrix P is the identity matrix. So, the form P · A = L · U is obtainable using the pivoting

described in the previous section.

A =

1 2 3

2 4 9

4 −3 1

 =⇒ L =

 1 0 0

0.5 1 0

0.25 0.5 1

 , U =

4 −3 1

0 5.5 8.5

0 0 −1.5

 P =

0 0 1

0 1 0

1 0 0

 (8)

(2) Puzzle board game

The puzzle game problem is described by using the following formalization:

bk = xk + xk−N + xk+N + xk−1 + xk+1, A = T ⊗ 1 + 1⊗ T − 1⊗ 1 (9)

where bk corresponds to the number of times that the kij is pressed. Using the kron matlab function

it’s possible to easy construct the matrix A, as shown in the code listing (2).

Listing 2: Construction of the matrix describing the puzzle game problem

1 function A = puzzleA()

2 T = diag(ones(N-1,1), -1) + diag(ones(N,1), 0) + diag(ones(N-1,1), 1);

3 I = eye(N);

4 A = kron(T, I) + kron(I, T) - kron(I, I);

5 end

The index k describes a remapping of a N × N grid into a N2 vector, precisely Kij = (i − 1) · N + j,

1 ≤ i, j ≤ N . One the A matrix is composed and given the ~b vector, then the solution is simply given

by x = A \ b. The code is shown in the attached script puzzle.m.

(3) Helicopter power formula: dimensional analysis

The elicopter problem is a dimension problem, because knowing that the involved quantities are P , g,

L, ρh and ρa, their relation will only depend on the units of measure expression. Thus, if the second

helicopter has 1/3 of the length with respect the first one, then, taking the formula in the document [?],

its power is given by P2 = 3−βP1.

Problem 1 [(3) Helicopter power formula: dimensional analysis] continued on next page. . . Page 5 of 15

Raffaele Ancarola Computational Physics III : Report 2

(3.1) Approaching the problem

The same formula cited above can be expressed in a logarithmic form:

ln(P) = α · ln(g) + β · ln(L) + γ · ln(ρh) + δ · ln(ρa) (10)

Assigning for each quantity its corresponding SI unit of measure [1], or rather, [P] = kg m2/s3, [g] =

m/s2, [L] = m, [ρ] = kg/m3, then the logarithm of m, s and kg can be treated as a vector basis. At this

point the equation (10) can be rewritten as:

ln(kg) · (1− γ − δ)+ ln(m) · (2− α− β + 3γ + 3δ) + ln(s) · (−3 + 2α) = 0 (11)

=⇒


γ + δ = 1

α+ β − 3γ − 3δ = 2

2α = 3

(12)

This system is indetermined, thus it cannot be computationally solved using the solve.m script,

because it’s matrix representation is not a square matrix.

(3.2) + (3.3), Adding a constraint

In the case where α = γ, the equation found in the previous point reduces to a determined system of

linear equations, which has a square matrix form A.
α+ δ = 1

2α− β + 3δ = −2

2α = 3

=⇒ A =

1 0 1

2 −1 3

2 0 0

 , ~b =

 1

−2

3

 (13)

Now the system is solveable and the solution is straight forward:

α = γ =
3

2
, β =

7

2
, δ = −1

2
(14)

So, the output power of the second helicopter P2 = 3−
7
2 · P1 ≈ 0.021P1.

The eigenvalue problem and diagonalization

Let Â be an operator defined over an hilbert space H. By solving an eigenvalue problem is meant to find all

vectors (or functions) x ∈ H such that there exists a real (or complex) value λ that satisfies the following

condition:

Â · x = λ · x, λ ∈ K (15)

In the case of this report, the interest is to computationally solve the eigenvalue problem for finite rank

operators, which can be expressed as square matrices. So, let N be rank of a square matrix A and ~v ∈ KN ,

then the equation (15) is equivalent to:

A · ~v = λ · ~v, λ ∈ K (16)

Power method

The power method bases its functioning on the iterative application of a specific operation T . The principle

is that every iteration step tends to minimise of the distance between the old evaluated eigen value λk−1

Page 6 of 15

Raffaele Ancarola Computational Physics III : Report 2

and the current λk. Given the unitary vector ~vk ∈ KN |‖ ~vk‖ = 1 at the iteration step k, the corresponding

diagonal value, relative to a square matrix A, is given by the hermitian scalar product (see [3] for the

notation):

λk = 〈 ~vk, A ~vk〉, λk ∈ K (17)

The operation T mentioned above variates depending on the specific method, which of there are three:

• Power method: T = A.

• Inverse power method: T = (A− 1 · τ)−1, τ ∈ K is a fixed eigenvalue target.

• Rayleigh quotient method: T = (A− 1 · λk−1)−1, λk−1 ∈ K is the old evaluated eigenvalue, as defined

in equation (17).

Notice that for the Tayleigh quotient method the application is adapting during each iteration, garanteeing

a faster convergence.

Jacobi method

Let A be a real symmetric matrix, by the spectral theorem [4] such a matrix is diagonalizable in a form

A = PDPT , where P is an orthogonal matrix and D a real diagonal matrix. The idea at the base is that

any orthogonal matrix P can be decomposed into a series of axis aligned rotation matrices {J (pq)(θ)}, p, q ∈
N∗, p < q: an axis aligned rotation matrix J (pq) is defined as:

J
(pq)
pp = J

(pq)
qq = cos(θ)

J
(pq)
qp = −J (pq)

pq = sin(θ)

∀i, j 6= p, q : J
(pq)
ij = δij

(18)

A property of such a matrix is that the determinant is 1 for any value of θ and J−1 = JT . The Jacobi

method essentially applies a series of axis aligned rotations to the matrix A until the diagonal form is

reached, adapting each step the value of θ. So, let M be the total number of steps necessary to reach the

diagonalization, then for 0 ≤ k ≤M and A0 = A the relation (19) shows by induction that the next step is

realized by an axis aligned rotation of the matrix Ak and it’s also possible at the end to obtain the transition

matrix P = PM .

D = JTM−1AM−1JM−1 = PTAP =⇒ Ak+1 = JTk AkJk, Pk+1 = PkJk (19)

Problem 2

(1) Power iteration methods implementation

As mentioned in the section (), the all methods involve a matrix application, which means that the

temporal complexity is at least N2, where N is the size of the involved matrix. Addictionally, the

number of iterations is not simple to estimate and the worst case is potentially infinite. The same could

be claimed for the tolerance that the minimized value |λk − λk−1| should have. In fact the matlab

constant eps is often too low as tolerance and for larger values of N the loop doesn’t exit. The

implementation codes can be found in the scripts eig power.m, eig ipower.m and eig rq.m.

Problem 2 continued on next page. . . Page 7 of 15

Raffaele Ancarola Computational Physics III : Report 2

(2) Eigenmodes of a vibrating string

(2.1) Formalization of the problem

The description of a vibrating string follows the wave equation (20). Applying a then separation of

variables, the problem reveals to be depend on an addictional variable λ ∈ R.

δ2u

δx2
=
κ

ρ

δ2u

δt2
u(0, t) = 0, u(L, t) = 0 u(x, y) = ω(x) · v(t) =⇒

{
ω′′(x) + λω(x) = 0

v′′(t) + λρ
κ v(t) = 0

(20)

The sign of λ will now determine the form of the solution. Analysing first the case of λ = 0, the

solution would be a linear equation ω(x) = Cx + B. Unfortunately, applying the boundary conditions

ω(0) = B = 0 and ω(L) = CL + B = 0 the implication is B = 0 and C = 0, thus ω(x) = 0. The same

proof is applicable to the case λ < 0: the solution would be ω(x) = B exp(γx) +C exp(−γx), γ =
√
−λ,

but ω(0) = B+C = 0 and ω(L) = B exp(γL) +C exp(−γL) = 0. These conditions imply that C = −B,

2B sinh(γL) = 0, which means that γ = 0 or B = 0, in both cases the solution turns to be trivial.

It remains the case where λ > 0, here the solution takes a sinusoidal form:ω(x) = Bx sin(γx) + Cx cos(γx), γ =
√
λ

v(t) = Bt sin(2πνt) + Ct cos(2πνt), ν =

√
λρ
κ

2π

(21)

This solution is not ill formed because ω(0) = Cx = 0, then by the second boundary condition ω(L) =

Bx sin(γL) = 0. Imposing Bx 6= 0, the resulting condition is sin(γL) = 0 ⇐⇒ γnL = πn, n ∈ N∗. In

other words, this means that for each natural number n, there exists a λn given by:

λn =
(πn
L

)2
(22)

Thus, the implicit condition to obtain a non-trivial solution is given by equation (22). Notice, by its

expression, that dimensionally λ is 1/m2 in the SI unit system [1].

(2.2) Implementation

Using a finite difference discretization, or rather given a step ∆x and setting xi = (i − 1) ∗ ∆x, the

problem is expressed as follow:

−ωi−1 + 2ωi − ωi+1

∆x2
= λωi ⇐⇒ A~ω = λ~ω, ~ω = (ω1, ..., ωN) (23)

A in equation (23) is the tridiagonal matrix containing −1 in the lower and the upper diagonal and

2 on the diagonal, all the terms divided by the squared step ∆x2. This matrix is symmetric, then by the

spectral theorem [4], it’s eigenvalues are real and for each pair of eigenvalues, the associated eigenspaces

are orthogonal each other. Furthermore, the matrix is positive definite, thus all the eigenvalues are

strictly positive. Notice that this setup automatically meets the boundary conditions, because the first

and the last line of A already discards the boundary terms (setting them implicitly to zero).

(2.3) + (2.4), Find the first eigenvalues

The first thing to notice is that the matrix A is not degenerate (by its positivity), then each eigenspace’s

dimension is 1. This clearly means that the first four eigenvalues are different each other. Theoretically,

by the expression in equation (22), the eigenvalues for L = 1 are λ1 = π2 ≈ 9.8696, λ2 = 4π2 ≈ 39.4784,

λ3 = 9π2 ≈ 88.8264, λ4 = 16π2 ≈ 157.9137 and λ5 = 25π2 ≈ 264.7401. In order to find the first one,

it’s enough to use the inverse power method setting the target to 0.

The other four can be found using an interval bisection strategy: let lk ∈ R+, k ∈ N, l0 = λ1, let lk+1

be the eigenvalue closest to 2lk and consider the interval Ik = [lk, lk+1]. The strategy consists in finding

Problem 2 [(2) Eigenmodes of a vibrating string] continued on next page. . . Page 8 of 15

Raffaele Ancarola Computational Physics III : Report 2

all eigenvalues contained in the interval Ik using a bisection algorithm and iterating with a new interval

until the number of expected eigenvalues is reached. It may happen that lk+1 = lk, then lk is doubled

until the evaluation of lk+1 mentioned above converges to a different and bigger value than lk. Notice

that lk is always an eigenvalue, this characteristic is foundamental to speed up the eigenvalue research

inside the interval Ik.

Consider now a real interval U such that the extrema are two eigenvalues a1 and a non necessarely

consecutive an, so the idea is to divide the interval into two disjoint sub-intervals U1 = [a1, ai] and

U2 = [ai, an] where ai is the eigenvalue closest to a1+an
2 , evaluated with the inverse power method.

If ai = a1 or ai = an, then all the eigenvalues have been found inside the interval U , otherwise the

algorithm recurses inside U1 and U2 until all eigenvalues are found.

(a) Scheme of the interval bisection
strategy

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

·10−2

x [m]

ω
(x
)
[]
λ1 = 9.8696
λ2 = 39.4779
λ3 = 88.8238
λ4 = 157.905
λ5 = 246.72

(b) Eigenvectors corresponding to the first five eigenvalues

Now taking U = Ik for each k iteration step, the eigenvalues are garanteed to be found in exponentially

growing intervals. This approach increases the computation efficiency in most cases, but it can perform

a lot of useless operations if the last requested eigenvalues are situated in an extremely large interval,

inducing an averange case time complexity of O(2log(n)) = O(n), where n is the number of requested

eigenvalues. The figure (1a) graphically shows how the strategy is applied and the code listing (11)

contains a matlab implementation.

The graph in figure (1b) shows the resulting eigenvectors with their correspective eigenvalues. Notice

that they don’t differ from the expected eigenvalues, which demonstrate that the inverse power method

is enough reliable.

Problem 2 continued on next page. . . Page 9 of 15

Raffaele Ancarola Computational Physics III : Report 2

(3) Jacobi method implementation

As presented in previous section (Jacobi

method), this algorithm diagonalises a sym-

metric matrix A applying a series of rotations.

The most important step of the algorithm is

the determination of the rotation angle cosine

and sine cos(θ) and sin(θ) respectively starting

from given p and q. The better those values

are determined, then the faster is the conver-

gence of Ak to a diagonal matrix. The code in

the listing (3) shows exactly how those values

are determined, maintaining the idea that each

rotation should reduce the target Apq to zero.

Furthermore the algorithm exits when all the

off-diagonal terms are reduces to zero or rather

this is done by evaluating the euclidean squared

norm of the off-diagonal values.

Listing 3: Determination of cos(θ) and sin(θ)

1 % cos and sin deduction from p, q and a square

matrix A

2 function [c, s] = from_pq(p, q, A)

3 i f abs(A(p,q)) > eps

4 tau = (A(q,q) - A(p,p)) / (2 * A(p,q));

5 i f tau >= 0

6 tau = -tau + sqrt(1 + tauˆ2);

7 else

8 tau = -tau - sqrt(1 + tauˆ2);

9 end

10 c = 1.0 / sqrt(1 + tauˆ2);

11 s = tau * c;

12 else

13 c = 1.0;

14 s = 0.0;

15 end

16 end

(3.1) + (3.2) Comparing classic and cyclic jacobi methods

There are two possible approaches in order to

determine the p and q coefficients: the clas-

sic Jacobi method shown in listing (4) takes

p and q as the indexes corresponding to the

maximum off-diagonal term, while cyclic Ja-

cobi method loops directly over all the indexes

of the lower triangular side of A as shown in

script (5). Although both algorithm share the

same time complexity O(N3), where N is the

size of A, the cyclic Jacobi method performs

a constant number of while iterations for any

value of N . The graphs in figures (2a) and (2b)

show exactly this result, demonstrating that

the cyclic approach is better than the classic

one.

Listing 4: Implementation of the classic Jacobi method

1 % P = transition matrix such that A * P = P * D

2 % A = diagonal matrix of eigenvalues

3 function [P, D] = eig_j(A)

4 [Ni, Nj] = size(A);

5 assert(Ni == Nj, "The input must be diagonal")

;

6 N = Ni;

7 P = eye(N);

8 D = A; % copy matrix A

9

10 while off(D, N) > (1e-9 * Nˆ2)

11 [p, q] = offmax(D,N);

12 [c, s] = from_pq(p, q, D);

13 [D, P] = transition(D, P, p, q, c, s, N);

14 end

15 end

Listing 5: Implementation of the cyclic Jacobi method

1 while off(D, N) > (1e-9 * Nˆ2)

2 for p = 1:(N-1)

3 for q = (p+1):N

4 [c, s] = from_pq(p, q, D);

5 [D, P] = transition(D, P, p, q, c, s, N);

6 end

7 end

8 end

Problem 2 [(3) Jacobi method implementation] continued on next page. . . Page 10 of 15

Raffaele Ancarola Computational Physics III : Report 2

100 101 102

10−4

10−3

10−2

10−1

100

N []

E
la
p
se
d
ti
m
e
[s
]

Classic
Cyclic

(a) Elapsed time of both algorithm as function of the
matrix size N

101 102

100

101

102

103

104

N []

N
u
m
b
er

of
it
er
at
io
n
s
[]

Classic
Cyclic

(b) Iteration count of both algorithm as function of the
matrix size

(3.3) Applying the axis aligned rotation matrix J

The transition function is supposed to preform the matrix multiplications Ak+1 = JTAkJ and

Pk+1 = PkJ . However, the standard matrix multiplication is unnecessarily expensive and given that the

J application differs from the identity just for few symmetric terms, then the computation time can be

drammaticly reduced.

Let B = JTA and noting aij and bij the i, j-th components of A and B respectively, then:

∀j : bij =


i = p : cos(θ) apj + sin(θ) aqj

i = q : − sin(θ) apj + cos(θ) aqj

otherwise : aij

(24)

The same reasonning can be done for the multiplication BJ noticing that BJ = (JTBT)T =

(JT (bji))
T , which means that if a′ij = (BJ)ij , the entire transformation becomes:

∀i : a′ij =


j = p : cos(θ) bip + sin(θ) biq

j = q : − sin(θ) bip + cos(θ) biq

otherwise : aij

(25)

The same can be applied at the same time for the evolution of the matrix P (see equation (19)). The

code listing (6) contains a matlab implementation of the transformation of A and P ; notice that this

approach reduces exactly the time complexity to O(N), avoiding the O(N3) standard matrix product.

Listing 6: Transition optimized code

1 % apply a rotation to A: J(p,q)’ A J(p,q)

2 function [A, P] = transition(A, P, p, q, c, s, N)

3 % left multiplication by J’

4 for j = 1:N

5 t = A(p,j);

6 A(p,j) = c * t - s * A(q,j);

7 A(q,j) = s * t + c * A(q,j);

8 end

9

10 % right multiplication by J

11 for i = 1:N

12 t = A(i,p);

Problem 2 [(3) Jacobi method implementation] continued on next page. . . Page 11 of 15

Raffaele Ancarola Computational Physics III : Report 2

13 A(i,p) = c * t - s * A(i,q);

14 A(i,q) = s * t + c * A(i,q);

15

16 tp = P(i,p);

17 P(i,p) = c * tp - s * P(i,q);

18 P(i,q) = s * tp + c * P(i,q);

19 end

20 end

(4) Landau levels in a square-lattice model

Page 12 of 15

Raffaele Ancarola Computational Physics III : Report 2

Conclusion

Appendix: matlab codes

Listing 7: Algorithm which solves a system

1 function x = solve(A, b)

2 % decompose LU

3 [L, U, P] = lu_decomposition(A);

4

5 y = solve_lower(L, P * b);

6 x = solve_upper(U, y);

7 end

8

9 function y = solve_lower(L, b)

10 [˜,N] = size(L);

11 y = b;

12 % start by the top

13 for k=1:N-1 % iteration on columns

14 y(k) = y(k) / L(k,k);

15 for i=k+1:N % iteration on rows

16 y(i) = y(i) - y(k) * L(i,k);

17 end

18 end

19 y(N) = y(N) / L(N,N);

20 end

21

22 function x = solve_upper(U, y)

23 [˜,N] = size(U);

24 x = y;

25 % start by the top

26 for k=N:-1:2 % iteration on columns

27 x(k) = x(k) / U(k,k);

28 for i=k-1:-1:1 % iteration on rows

29 x(i) = x(i) - x(k) * U(i,k);

30 end

31 end

32 x(1) = x(1) / U(1,1);

33 end

Listing 8: Power iteration method implementation

1 function [vec, val] = eig_power(inputmatrix)

2 [Ni, Nj] = size(inputmatrix);

3 assert(Ni == Nj || Ni == 0, ’Matrix must be square or non-zero’)

4 vec = zeros(Ni, 1);

5 vec(1) = 1;

6 val = ctranspose(vec) * inputmatrix * vec;

7 oldval = 0;

8

9 while abs(oldval - val) > eps

10 vec = inputmatrix * vec;

11 vec = vec / norm(vec);

12 oldval = val;

13 val = ctranspose(vec) * inputmatrix * vec;

14 end

Page 13 of 15

Raffaele Ancarola Computational Physics III : Report 2

15 end

Listing 9: Inverse power iteration method implementation

1 function [vec, val] = eig_ipower(inputmatrix, target)

2 [Ni, Nj] = size(inputmatrix);

3 assert(Ni == Nj || Ni == 0, ’Matrix must be square or non-zero’)

4 vec = rand(Ni,1);

5 vec = vec / norm(vec);

6 val = ctranspose(vec) * inputmatrix * vec;

7 oldval = target;

8 I_target = eye(Ni) * target;

9 count = 0;

10

11 % exit if the delta is zero or the delta is constant

12 while abs(oldval - val) > eps && count < 100

13 vec = (inputmatrix - I_target) \ vec;

14 vec = vec / norm(vec);

15

16 oldval = val;

17 val = ctranspose(vec) * inputmatrix * vec;

18

19 count = count + 1;

20 end

21

22 i f norm((inputmatrix * vec) - (val * vec)) > 1e-10

23 % rerun with this target

24 [vec, val] = eig_ipower(inputmatrix, val);

25 end

26 end

Listing 10: Rayleigh quotient iteration method implementation

1 function [vec, val] = eig_rq(inputmatrix, target)

2 [Ni, Nj] = size(inputmatrix);

3 assert(Ni == Nj || Ni == 0, ’Matrix must be square or non-zero’)

4 vec = zeros(Ni, 1);

5 vec(1) = 1;

6

7 val = ctranspose(vec) * inputmatrix * vec;

8 oldval = target;

9 I = eye(Ni);

10

11 while abs(val - oldval) > 1e-10

12 vec = (inputmatrix - I * oldval) \ vec;

13 vec = vec / norm(vec);

14 oldval = val;

15 val = ctranspose(vec) * inputmatrix * vec;

16 end

17 %val = newval - target;

18 end

Listing 11: Interval bisection strategy implementation

1 function [eigval, eigvect] = eig_first(A, n)

2 [psi_lower, lower] = eig_ipower(A, 0);

3 found = {{lower, psi_lower}};

Page 14 of 15

Raffaele Ancarola Computational Physics III : Report 2

4

5 while length(found) < n

6 [psi_upper, upper] = eig_ipower(A, lower * 2);

7 result = eig_between(A, lower, upper);

8 found = {found{:} result{:}};

9 i f abs(upper - lower) > 1e-10

10 found = {found{:} {upper, psi_upper}};

11 lower = upper;

12 else

13 lower = lower * 2;

14 end

15 end

16

17 % rearrange output

18 eigval = cell(n,1);

19 eigvect = cell(n,1);

20 for i = 1:n

21 eigval{i} = found{i}{1};

22 eigvect{i} = found{i}{2};

23 end

24 end

25

26 % lower and upper are supposed to be eigenvalues

27 function found = eig_between(A, lower, upper)

28 found = {};

29 i f abs(lower - upper) > 1e-10

30 mean = (lower + upper) / 2.0;

31 [psi, val] = eig_ipower(A, mean);

32

33 i f abs(lower - val) > 1e-10 && abs(upper - val) > 1e-10

34 flow = eig_between(A, lower, val);

35 fhigh = eig_between(A, val, upper);

36 found = {flow{:}, {val, psi}, fhigh{:}};

37 end

38 end

39 end

Documentation and sources

[1] https://en.wikipedia.org/wiki/SI_base_unit

[2] https://math.stackexchange.com/questions/1274373/proof-for-existence-of-lu-decomposition

[3] https://en.wikipedia.org/wiki/Inner_product_space

[4] https://en.wikipedia.org/wiki/Spectral_theorem

Page 15 of 15

