
Computational Physics III: Report 2

Linear systems solving and diagonalization methods
Due on April 30, 2020

April 25, 2020

Raffaele Ancarola

1

Raffaele Ancarola Computational Physics III : Report 2

Contents

Introduction 3

Solving a system of linear equations 3

Gauss elimination algorithm . 3

LU decomposition . 3

Diagonalization: introduction . 3

Problem 1 4

(1) LU decomposition implementation . 4

Partial pivoting . 4

(1.1) Solving a linear system . 5

(1.3) Decomposition of a matrix . 5

(2) Puzzle board game . 5

(3) Helicopter power formula: dimensional analysis . 5

(3.1) Approaching the problem . 6

(3.2) + (3.3), Adding a constraint . 6

The eigenvalue problem and diagonalization 6

Power method . 6

Jacobi method . 7

Problem 2 8

(1) Power iteration methods implementation . 8

(2) Eigenmodes of a vibrating string . 8

(3) Jacobi method implementation . 8

(4) Landau levels in a square-lattice model . 8

Conclusion 9

Page 2 of 9

Raffaele Ancarola Computational Physics III : Report 2

Introduction

Solving a system of linear equations

A linear problem could be defined as a system of which the describing equations are all linear. Furthermore,

a linear system is said to be determined if the number of equations N is finite and it corresponds to the

number of the unknowns. Such a system defined on a field K takes the advantage to be written in a matrix

form:

A · ~x = ~b (1)

where A is the describing matrix and ~b ∈ KN the affine component of the system, or the components

which are independent with respect to the unknows contained in ~x. Because the system is determined, the

condition that A must satisfy is the inversibility, then A ∈ GL(N) and a solving the system means to find

~x ∈ KN such that eq. (1) is satisfied. There exist various approaches that can reach this aptempt, in this

report three cases will be analysed: the gauss elimination, the LU decomposition and the diagonalisation.

Gauss elimination algorithm

The Gauss elimination bases to the fact that any square matrix can be decomposed into a finite sequence

of elementary operations {Pk}1≤k≤M ,M ∈ N∗. There are basically three kinds of them:

• Multipling of a row by a scalar factor λ ∈ K

• Switching a row with another

• Adding a row with a multiple of another

The purpose of this method is to reduce the involved matrix A into the identity applying the same

operations to the vector ~b, as shown in the equation (2).

A = P1 · ... · PM =⇒ ~x = P−1
M · ... · P−1

1 ·~b , M ∈ N∗ (2)

LU decomposition

The LU decomposition is not a direct method which solves a linear system, but it allows to simplify the

resolution by decomposing the A matrix into a lower-triangular matrix L and an upper-triangular matrix

U . The simplification is due to the major facility to invert the two matrices precedently presented. Once A

is decomposed, the process is straigh-forward:

A · ~x = L · U · ~x = ~b

L · ~y = ~b (3)

U · ~x = ~y (4)

Both equations (3) and (4) can be solved sequentially using the Gauss elimination method.

Diagonalization: introduction

In case A is a symmetric matrix, the spectral theorem [] states that such a matrix is equivalent (definition

of equivalence here: []) to a diagonal matrix D, where the transition matrix P is unitary (P−1 = P̄T), then:

A = P ·D · P̄T =⇒ ~x = P ·D−1 · P̄T ·~b (5)

Generally diagonalization is not used to solve general systems of linear equations, but it’s convenient

when the problem is related to find the eigen-base related to the eigen-values.

Page 3 of 9

Raffaele Ancarola Computational Physics III : Report 2

Problem 1

(1) LU decomposition implementation

This algorithm separes the input matrix A into a lower triangular L and an upper triangular U , garan-

teeing that A = L · U . Neverthless, not all the invertible square matrices are purely LU decomposable,

then it may happen that the output can result ill formed. The code (1) shows at line 23 that a division

by the diagonal values is performed, causing eventually a singularity. A possible work-around is to

apply the partial pivoting technique in order to swap the problematic lines. In listing (1) is shown a full

implementation with partial pivoting.

Listing 1: LU decomposition implementation with partial pivoting

1 function [L, U, P] = lu_decomposition(A)

2 [Ni, Nj] = size(A);

3 assert(Ni == Nj, "The input must be diagonal");

4

5 N = Nj;

6 assert(N > 0, "The input must non empty");

7

8 L = eye(N); % if zeros doesn’t give the same result

9 U = A; % if zeros doesn’t give the same result

10 P = eye(N); % identity matrix

11

12 for k=1:(N-1)

13 % pivoting section

14 [Amax,r] = max(abs(U(k:N, k)));

15 r = r + k - 1;

16 % swap rows if it’s not the identity swap operation

17 U([k r],:) = U([r k],:);

18 P([k r],:) = P([r k],:);

19 L([k r], 1:k-1) = L([r k], 1:k-1);

20

21 % computing LU

22 for i=(k+1):N

23 L(i,k) = U(i,k) / U(k,k);

24 U(i,:) = U(i,:) - L(i,k) * U(k,:);

25 end

26 end

27 end

Partial pivoting

The LU decomposition algorithm (presented below in exercise 1.1) can easily run into singularities,

especially when A presents zeros as diagonal terms. In order to avoid divergent results, it would better

select the rows of which element is not zero in the requested columns and swap them with the current

one. More precisely, at the k-th step, select the r-th row such that Ark = max
k≤i≤N

|Aik|, then swap rows

at the position k and r. If the pivoting is applied the resulting LU decomposition won’t be anymore like

it was defined in the previous section, but a correction to equation (3) must be applied:

P ·A = L · U =⇒ L · ~y = P ·~b (6)

where P is the orthogonal matrix that accumulated all row switching applications. The rest of the

solving method remains unchanged.

Problem 1 [(1) LU decomposition implementation] continued on next page. . . Page 4 of 9

Raffaele Ancarola Computational Physics III : Report 2

(1.1) Solving a linear system

A linear system can be solved applying the LU decomposition and then a gauss elimination process, as

shown in the equations (6) and (4).

For example, the system in equation (7) is determined and can be solved using the solve.m script.

Addictionally the test solve.m script compares with the matlab x = A \ b verifying that the so-

lution ~x is given correctly by the solve.m script.

2x1 + x2 − x3 + 5x4 = 13

x1 + 2x2 + 3x3 − x4 = 37

x1 + x3 + 6x4 = 30

x1 + 3x2 − x3 + 5x4 = 19

=⇒ A =

2 1 −1 5

1 2 3 −1

1 0 1 6

1 3 −1 5

 , ~b =

13

37

30

19

 =⇒ ~x = A−1·~b =

2

4

10

3

(7)

(1.3) Decomposition of a matrix

The example taken in equation (8) is a problematic case where a pure LU decomposition doesn’t exist.

A necessary and sufficient condition to the existance of a pure LU decomposition is that the matrix must

be gauss reductible without any row exchange (ref. [?]), that’s why if such a decomposition exists, then

pivoting matrix P is the identity matrix. So, the form P · A = L · U is obtainable using the pivoting

described in the previous section.

A =

1 2 3

2 4 9

4 −3 1

 =⇒ L =

 1 0 0

0.5 1 0

0.25 0.5 1

 , U =

4 −3 1

0 5.5 8.5

0 0 −1.5

 P =

0 0 1

0 1 0

1 0 0

 (8)

(2) Puzzle board game

The puzzle game problem is described by using the following formalization:

bk = xk + xk−N + xk+N + xk−1 + xk+1, A = T ⊗ 1 + 1⊗ T − 1⊗ 1 (9)

where bk corresponds to the number of times that the kij is pressed. Using the kron matlab function

it’s possible to easy construct the matrix A, as shown in the code listing (2).

Listing 2: Construction of the matrix describing the puzzle game problem

1 function A = puzzleA()

2 T = diag(ones(N-1,1), -1) + diag(ones(N,1), 0) + diag(ones(N-1,1), 1);

3 I = eye(N);

4 A = kron(T, I) + kron(I, T) - kron(I, I);

5 end

The index k describes a remapping of a N × N grid into a N2 vector, precisely Kij = (i − 1) · N + j,

1 ≤ i, j ≤ N . One the A matrix is composed and given the ~b vector, then the solution is simply given

by x = A \ b. The code is shown in the attached script puzzle.m.

(3) Helicopter power formula: dimensional analysis

The elicopter problem is a dimension problem, because knowing that the involved quantities are P , g,

L, ρh and ρa, their relation will only depend on the units of measure expression. Thus, if the second

helicopter has 1/3 of the length with respect the first one, then, taking the formula in the document [?],

its power is given by P2 = 3−βP1.

Problem 1 [(3) Helicopter power formula: dimensional analysis] continued on next page. . . Page 5 of 9

Raffaele Ancarola Computational Physics III : Report 2

(3.1) Approaching the problem

The same formula cited above can be expressed in a logarithmic form:

ln(P) = α · ln(g) + β · ln(L) + γ · ln(ρh) + δ · ln(ρa) (10)

Assigning for each quantity its corresponding SI unit of measure [1], or rather, [P] = kg m2/s3, [g] =

m/s2, [L] = m, [ρ] = kg/m3, then the logarithm of m, s and kg can be treated as a vector basis. At this

point the equation (10) can be rewritten as:

ln(kg) · (1− γ − δ)+ ln(m) · (2− α− β + 3γ + 3δ) + ln(s) · (−3 + 2α) = 0 (11)

=⇒

γ + δ = 1

α+ β − 3γ − 3δ = 2

2α = 3

(12)

This system is indetermined, thus it cannot be computationally solved using the solve.m script,

because it’s matrix representation is not a square matrix.

(3.2) + (3.3), Adding a constraint

In the case where α = γ, the equation found in the previous point reduces to a determined system of

linear equations, which has a square matrix form A.
α+ δ = 1

2α− β + 3δ = −2

2α = 3

=⇒ A =

1 0 1

2 −1 3

2 0 0

 , ~b =

 1

−2

3

 (13)

Now the system is solveable and the solution is straight forward:

α = γ =
3

2
, β =

7

2
, δ = −1

2
(14)

So, the output power of the second helicopter P2 = 3−
7
2 · P1 ≈ 0.021P1.

The eigenvalue problem and diagonalization

Let Â be an operator defined over an hilbert space H. By solving an eigenvalue problem is meant to find all

vectors (or functions) x ∈ H such that there exists a real (or complex) value λ that satisfies the following

condition:

Â · x = λ · x, λ ∈ K (15)

In the case of this report, the interest is to computationally solve the eigenvalue problem for finite rank

operators, which can be expressed as square matrices. So, let N be rank of a square matrix A and ~v ∈ KN ,

then the equation (15) is equivalent to:

A · ~v = λ · ~v, λ ∈ K (16)

Power method

The power method bases its functioning on the iterative application of a specific operation T . The principle

is that every iteration step tends to minimise of the distance between the old evaluated eigen value λk−1

Page 6 of 9

Raffaele Ancarola Computational Physics III : Report 2

and the current λk. Given the unitary vector ~vk ∈ KN |‖ ~vk‖ = 1 at the iteration step k, the corresponding

diagonal value, relative to a square matrix A, is given by the hermitian scalar product (see [3] for the

notation):

λk = 〈 ~vk, A ~vk〉, λk ∈ K (17)

The operation T mentioned above variates depending on the specific method, which of there are three:

• Power method: T = A.

• Inverse power method: T = (A− 1 · τ)−1, τ ∈ K is a fixed eigenvalue target.

• Rayleigh quotient method: T = (A− 1 · λk−1)−1, λk−1 ∈ K is the old evaluated eigenvalue, as defined

in equation (17).

Jacobi method

Page 7 of 9

Raffaele Ancarola Computational Physics III : Report 2

Problem 2

(1) Power iteration methods implementation

(2) Eigenmodes of a vibrating string

(3) Jacobi method implementation

(4) Landau levels in a square-lattice model

(a) Grey-scaled image file stm.png (b) Fourier transformed image file stm.png

Page 8 of 9

Raffaele Ancarola Computational Physics III : Report 2

Conclusion

Documentation and sources

[1] https://en.wikipedia.org/wiki/SI_base_unit

[2] https://math.stackexchange.com/questions/1274373/proof-for-existence-of-lu-decomposition

[3] https://en.wikipedia.org/wiki/Inner_product_space

Page 9 of 9

