
Matrix product states: iterative Schmidt
decomposition of a wavefunction

Jeanne Colbois

May 16, 2020

1 Introduction
The aim is to write a quantum ground state wave function as a matrix product state.
The main references about this kind of algorithms are [1] (for the idea behind TEBD),
[2] (for the idea behind iTEBD), [3], if you need to think about the notions of canonical
form of an MPS or contract a tensor using boundary-MPS-like techniques similar to
iTEBD but where your gates are not unitary.

2 Writing a 1D quantum state as a matrix product state
The idead of TEBD, iTEBD and all other tensor networks methods for 1D quantum
systems is to approximate the state |ψ〉 by a Matrix Product State of finite bond di-
mension [1]. The expression of a wavefunction as a matrix product state was derived in
many papers, but for the sake of clarity, let us derive it once more here.

2.1 Definition
Consider a quantum state |ψ〉. It can be seen as

|ψ〉 =
∑

i1,i2,...

ci1,i2... |i1, i2, ...〉 (1)

where the ij index the physical state (they span the local Hilbert space) and ci1,i2,... is
a huge tensor with as many legs as there are sites (or local Hilbert spaces). Typically
i → σ, i.e. the local Hilbert space corresponds to a spin state. This tensor can be
represented as an oblong object with as many legs as there are sites. The aim of our
demonstration will be to show that by performing Schmidt decompositions iteratively,
one can bring this huge tensor in the form of a product of many much smaller tensors,
as depicted in Fig. 1. Here, we follow the derivation by Vidal [2], but we adapt it to
compressing the quantum state starting from the left, and we consider open boundary
conditions, that is, two virtual legs remain left and right of the tensor.

1

Figure 1: Matrix product form of a quantum state. The rectangles depict tensors, with as
many indices as they have legs. The legs connecting two tensors are summed
over. The legs going down denote physical indices {i1, . . . , in}. This way, the
tensor on the left stands for ci1,i2,..., while the right hand side corresponds to a
product of tensors

∑
α2,α3,...A

(i1)
α2 A

(i2)
α2α3 · · ·

2.2 Tensor notations
There is a very useful notation to work with wavefunctions, tensors and matrices, which
is called the tensor notation. In Fig. 2, the main items are identified. In general, a
mathematical object is represented as a box, and its indices (each index spanning a
dimension) are represented by "sticks", called legs, sticking out of the box. Therefore, a
scalar would be just a box with no legs. A vector, described by vi, that is an object with
one index i, is a box with one leg. A matrix Ai,j is a box with two legs, and in general,
a tensor with k indices (we say as well a tensor of rank k, not to be confused with the
rank of a matrix) is described by a box with k legs.

Figure 2: Elements of tensor notation: any object is a box, and the number of “legs”
attached to each box corresponds to the number of indices for the object: 0 is
a scalar, 1 is a vector, 2 is a matrix, and k is a rank-k tensor

The main operation that we use on matrices, tensors or vectors is the multiplication.
For instance, the multiplication of a vector vj by a matrix Ai,j , denoted

xi :=
∑
j

Ai,jvj (2)

is illustrated in Fig. 3. The sum over the index j which is shared between A and v is
denoted by connecting the corresponding legs of the corresponding tensors. A leg can
only be connected to one other leg, and they have to have the same dimension (i.e. the
same number of degrees of freedom), such that the sum makes sense.

2

Figure 3: The basic operations between vectors and matrices, but represented in tensor
notation. A leg which is shared between two objects corresponds to summing
over the corresponding index. Notice how the scalar product indeed gives a
scalar, i.e. a box with no legs, and the matrix-vector product gives a box with
one leg, i.e. a vector.

In general, a multiplication of two tensors such as

Mi,j,k =
∑
l,m

Ai,j,l,mBl,m,k (3)

is called a tensor contraction. A tensor contraction can involve more than two tensors,
for instance:

Mi,j,k,l =
∑
m,n,o

Ai,j,n,oBn,m,kCm,o,l, (4)

as illustrated in Fig. 4.

Figure 4: Examples of tensor contractions, corresponding to Eqs. 3 and 4. In the second
case, the blue labels correspond to the entries that have to be given to the
ncon.m function to perform the contraction. The circled indices give the order
of the indices in the output of ncon (corresponding to the negative indices on
the right of the assignment).

3

2.3 Usage of ncon

The function ncon.m, developed by some of the Tensor Network “kings” Robert N. C.
Pfeifer, Glen Evenbly, Sukhwinder Singh and Guifre Vidal [4], is designed to make tensor
contraction easy. The basic idea is that one has to give ncon

1. A cell array of the tensors to contract (e.g. {A,B,C} for the contraction in equation
4)

2. A cell array of legs indices, given by
a) There has to be one array per tensor to contract (e.g. 3 in our example)
b) For each tensor, the array has to associate a contraction index to each leg of

the tensor (in our example, the first array, associated with A, will contain 4
numbers, the second, associated with B, will have 3 numbers, and the third,
associated with C, will have 3 numbers as well)

c) Two legs that are contracted have to be given the same index (e.g., the 3rd
leg of A and the first of B in our example)

d) An index can only be used for one contraction
e) A leg which is not contracted has to be given a negative index
f) The order in which the contractions will be performed is given by the order

of the positive indices
g) The order of the indices for the output tensor is given by the order of the

negative indices
In our example, this would work:
M=ncon({A,B,C},{[-1 -2 2 3],[2 1 -3],[1 3 -4]})

2.4 Writing the wavefunction as a matrix product state
In these notes, we will use extensively the fact that a Schmidt decomposition of a wave-
function can be written as a singular value decomposition of an associated tensor. It is
therefore not necessary to know about Schmidt decomposition to understand the steps
below. However, the proof of the Schmidt decomposition is given at the end of the notes
for completeness, sec. 2.5.

To write a waveunfction as an MPS, we start between sites 1 and 2 and then iterate
until the wavefunction is written as a matrix product state. The corresponding steps of
the algorithm, explicited in the following equations, are illustrated in tensor notation in
Figs. 5, 6, 7.

We consider a wavefunction |ψ〉 on N sites with open boundary conditions, namely two
virtual indices. In the following, we denote physical indices, corresponding to physical
degrees of freedom, by in (where n goes through the sites indices, and in goes through
the local Hilbert space basis). Virtual indices are denoted by αn.

4

|ψ〉α1,αN+1
=

∑
i1,i2,...

Ψα1,i1,i2,...,iN ,αN+1 |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 (5)

reshape=
∑

i1,i2,...

Ψ(α1,i1),(i2,...,iN ,αN+1) |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 (6)

svd=
∑

i1,i2,...

∑
β,α2

U
(1)
(α1,i1),βs

(1)
β,α2

V
(1)
α2,(i2,...,iN ,αN+1) |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 (7)

Notice that we are assuming a finite rank for the Schmidt decomposition. In general,
what we will do is put a threshold on the singular values, and drop all the singular
values smaller than 1e − 14 (and the corresponding columns and rows in U , s and V ,
respectively.
We can now perform

Ã
(1)
(α1,i1),α2

:=
∑
β

U
(1)
(α1,i1),βs

(1)
β,α2

(8)

and then reshape this tensor

A(1),i1
α1,α2

reshape= Ã(α1,i1),α2 . (9)

V (1) can be reshaped as well, which meas that after this first step we get:

|ψ〉α1,αN+1
=

∑
i1,i2,...

∑
α2

A(1),i1
α1,α2V

(1)
α2,i2,...,iN ,αN+1

|i1, i2, . . .〉 ⊗ |α1, αN+1〉 . (10)

Eqs. 5 to 10 are illustrated in tensor notation in Fig. 5.
We can now iterate similar steps on V , saving at step t a new tensor A(t). For

simplicity, we show the second step, and then the last step. The second step is:

|ψ〉α1,αN+1

reshape V (1)
=

∑
i1,i2,...

∑
α2

A(1),i1
α1,α2V

(1)
(α2,i2),(i3,...,iN ,αN+1) |i1, i2, . . .〉 ⊗ |α1, αN+1〉 (11)

svd V (1)
=

∑
i1,i2,...

∑
α2

A(1),i1
α1,α2

∑
β′,α3

U
(2)
(α2,i2),β′s

(2)
β′,α3

V
(2)
α3,(i3,...,iN ,αN+1) |i1, i2, . . .〉 ⊗ |α1, αN+1〉 ,

(12)

followed by:
A(2),i2
α2,α3

reshape=
∑
β′

U
(2)
(α2,i2),β′s

(2)
β′,α3

, (13)

which gives:

|ψ〉α1,αN+1

reshape V (2)
=

∑
i1,i2,...

∑
α2,α3

A(1),i1
α1,α2A

(2),i2
α2,α3V

(2)
α3,i3,...,iN ,αN+1

|i1, i2, . . . , iN 〉⊗|α1, αN+1〉 .

(14)
Equations 11 to 14 are depicted in Fig. 6.

5

Figure 5: The first step in the procedure for the iterative Schmidt decomposition. The
green line shows where the SVD decomposition is going to be performed next.
Bold legs illustrate grouped indices, as written next. The diamond describes the
diagonal singular values matrix. The numbers above the equalities correspond
to the equations in the main text.

Iterating this, at the previous to last step, one gets:

|ψ〉α1,αN+1
=

∑
i1,i2,...

∑
α2,α3....,αN−1

A(1),i1
α1,α2A

(2),i2
α2,α3 · · ·

· · ·A(N−2),iN−2
αN−2,αN−1V

(N−2)
αN−1,iN−1,iN ,αN+1

|i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 . (15)

The last step is still very similar, the only difference being that one will have to save the
last V tensor:

|ψ〉α1,αN+1

reshape V (N−2)
=

∑
i1,i2,...

∑
α2,α3....,αN−1

A(1),i1
α1,α2A

(2),i2
α2,α3 · · ·

· · ·A(N−2),iN−2
αN−2,αN−1V

(N−2)
(αN−1,iN−1),(iN ,αN+1) |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 (16)

then

|ψ〉α1,αN+1

svd V (N−2)
=

∑
i1,i2,...

∑
α2,α3....,αN−1

(
A(1),i1
α1,α2A

(2),i2
α2,α3 · · ·A

(N−2),iN−2
αN−2,αN−1

·
∑
β,αN

U
(N−1)
(αN−1,iN−1),βs

(N−1)
β,αN

V
(N−1)
αN ,(iN ,αN+1) |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉

)
. (17)

Defining A(N−1) similarly as before

A(N−1),iN−1
αN1 ,αN

reshape=
∑
β

U
(N−1)
(αN−1,iN−1),βs

(N−1)
β,αN

, (18)

6

Figure 6: The second step in the procedure for the iterative Schmidt decomposition. The
input is the V (1) tensor obtained at the first step. The green line shows where
the SVD decomposition is going to be performed next. The numbers above the
equalities correspond to the equations in the main text.

one gets

|ψ〉α1,αN+1
=

∑
i1,i2,...

∑
α2,α3....,αN

A(1),i1
α1,α2A

(2),i2
α2,α3 · · ·

· · ·A(N−2),iN−2
αN−2,αN−1A

(N−1),iN−1
αN1 ,αN

V
(N−1)
αN ,(iN ,αN+1) |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 . (19)

This is shown in Fig. 7.

Figure 7: The previous to last step in the procedure for the iterative Schmidt decompo-
sition. The input is the V (N−2) tensor obtained at the step before that. The
numbers above the equalities correspond to the equations in the main text.

Finally, reshaping
V

(N−1)
αN ,(iN ,αN+1) → V (N−1),iN

αN ,αN+1 (20)

7

one get

|ψ〉α1,αN+1
=

∑
i1,i2,...

∑
α2,α3....,αN

A(1),i1
α1,α2A

(2),i2
α2,α3 · · ·

· · ·A(N−2),iN−2
αN−2,αN−1A

(N−1),iN−1
αN1 ,αN

V
(N−1),iN
αN ,αN+1) |i1, i2, . . . , iN 〉 ⊗ |α1, αN+1〉 , (21)

which is a matrix product state form for the wavefunction |ψ〉α1,αN+1
, as illustrated in

Fig. 8.

Figure 8: The last step in the procedure for the iterative Schmidt decomposition. In
this last step, V (N−1) is simply reshaped. The numbers above the equalities
correspond to the equations in the main text.

2.5 Schmidt decomposition
Theorem 2.1 (Schmidt decomposition). Let H1 and H2 be Hilbert spaces of finite
dimensions n1 and n2 (w.l.o.g. n1 ≥ n2). Then for any |ϕ〉 in H1 ⊗ H2, there exist
orthonormal sets

{
|Φ/

1〉 , . . . ,
∣∣Φ/

n2

〉}
⊂ H1 and

{
|Φ.

1〉 , . . . ,
∣∣Φ.

n2

〉}
⊂ H2 such that

|ϕ〉 =
n2∑
i=1

si |Φ/
i 〉 ⊗ |Φ.

i 〉 (22)

where si ∈ R, si ≥ 0, and {si}1,n2
is uniquely determined by |ϕ〉.

Proof. The Schmidt decomposition can be seen as an application of the Singular Value
Decomposition (SVD) in the context of finite-dimensional Hilbert spaces. To be able to
use this, one defines orthonormal bases

{
|ε/1〉 , . . . ,

∣∣ε/n1

〉}
⊂ H1 and

{
|ε.1〉 , . . . ,

∣∣ε.n2

〉}
⊂

H2. Then, by definition of the tensor product, it exists mi,k such that

|ϕ〉 =
n1,n2∑
i=1,k=1

mi,k |ε/i 〉 ⊗ |ε.k〉 . (23)

This allows to describe |ϕ〉 through the n1 × n2 matrix M = {mi,k}. Using the SVD
result, we are going to prove the Schmidt decomposition. We know that it exists two
unitary matrices (n1×n1 U and n2×n2 V) such that M = UΣV † where Σ is an n1×n2
diagonal non-negative matrix. Let {si}i=1,...,n2

bet the diagonal elements of Σ.

8

Thus we can write

|ϕ〉 =
n1,n2∑
i=1,k=1

mi,k |ε/i 〉 ⊗ |ε.k〉 (24)

=
n1,n2,n2∑
i=1,k=1,α

Ui,αsα(V †)α,k |ε/i 〉 ⊗ |ε.k〉 . (25)

Defining

|Φ/
α〉 :=

n1∑
i=1

Ui,α |ε/i 〉 α = 1 . . . n2 (26)

and
|Φ.
α〉 :=

n2∑
k=1

(V †)α,k |ε.k〉 α = 1 . . . n2, (27)

we get

|ϕ〉 =
n2∑
i=1

si |Φ/
i 〉 ⊗ |Φ.

i 〉 . (28)

It is easy to see that

〈
Φ.
α

∣∣∣Φ.
β

〉
=

n2∑
i=1,k=1

Vi,α(V †)β,k 〈ε.i |ε.k〉 (29)

= (V †V)β,α = δα,β, (30)

and similarly
〈

Φ/
α

∣∣∣Φ/
β

〉
= δα,β. We can thus conclude that the orthonormal sets exists,

which ends the proof of the Schmidt decomposition theorem.

References
[1] Guifré Vidal. “Efficient Classical Simulation of Slightly Entangled Quantum Com-

putations”. en. In: Physical Review Letters 91.14 (Oct. 2003). issn: 0031-9007, 1079-
7114. doi: 10.1103/PhysRevLett.91.147902.

[2] G. Vidal. “Classical Simulation of Infinite-Size Quantum Lattice Systems in One
Spatial Dimension”. In: Phys. Rev. Lett. 98.7 (Feb. 2007), p. 070201. doi: 10.1103/
PhysRevLett.98.070201.

[3] R. Orús and G. Vidal. “Infinite time-evolving block decimation algorithm beyond
unitary evolution”. In: Phys. Rev. B 78.15 (Oct. 2008), p. 155117. doi: 10.1103/
PhysRevB.78.155117.

[4] Robert N. C. Pfeifer et al. NCON: A tensor network contractor for MATLAB. 2014.
arXiv: 1402.0939 [physics.comp-ph].

9

https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.78.155117
https://arxiv.org/abs/1402.0939

	Introduction
	Writing a 1D quantum state as a matrix product state
	Definition
	Tensor notations
	Usage of ncon
	Writing the wavefunction as a matrix product state
	Schmidt decomposition

