Computational Physics III

Lecture 13:

Singular value decomposition (SVD).
Least squares regression.
May 28, 2020

Outline

- Singular value decomposition (SVD) example
- Linear systems revisited
- Least squares regression
- Weighted least squares regression

Singular Value Decomposition (SVD)

Any $m \times n(m \geq n)$ matrix A has a singular value decomposition (SVD)

$$
A=U \Sigma V^{*}
$$

where (in full-form SVD)
U is the $m \times m$ unitary matrix of left-singular vectors, V is the $n \times n$ unitary matrix of right-singular vectors, Σ is the $m \times n$ diagonal matrix of singular values.

By convention, singular values are ordered as

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{p}>\sigma_{p+1}=\ldots=\sigma_{n}=0
$$

with p the rank matrix A. If $p=n$ the matrix is full-rank.

Singular Value Decomposition (SVD)

Reduced form SVD:

Full form SVD:

Matrix properties from SVD

A single SVD decomposition of A provides the following information:

- Rank of A (number of non-zero singular values)
- $\operatorname{range}(A)=\left\langle u_{1}, \ldots, u_{p}\right\rangle$ and $\operatorname{null}(A)=\left\langle u_{p+1}, \ldots, u_{n}\right\rangle$
- Induced 2-norm and Frobenius norm
- Absolute values of eigenvalues of A (if $A=A^{*}$)
- Determinant $|\operatorname{det}(A)|=\prod_{i=1}^{m} \sigma_{i}$
- Condition number $K(A)=\frac{\sigma_{\text {max }}}{\sigma_{\text {min }}}$
- Least squares solution, dyadic expansion, matrix approximation
- ...and more

Solving a linear system with SVD

Solve a linear system $A x=b$ of m equations with n unknowns ($m \geq n$) using singular value decomposition (full form)

$$
\begin{array}{cl}
U \Sigma V^{T} x=b \quad \Sigma V^{T} x=U^{T} b & \left\{\begin{array}{l}
d=U^{T} b \\
\Sigma z=d \\
z=V^{T} x
\end{array}\right. \\
\sigma_{j} z_{j}=d_{j} \quad j \leq n \text { and } \sigma_{j} \neq 0 & z_{j}=d_{j} / \sigma_{j} \quad j \leq n \text { and } \sigma_{j} \neq 0 \\
0 \cdot z_{j}=d_{j} \quad j \leq n \text { and } \sigma_{j}=0 & z_{j}=\text { whatever } \quad j \leq n \text { and } \sigma_{j}=0 \\
0=d_{j} \quad j>n & \text { Must be satisified }
\end{array}
$$

Solving a linear system with SVD: an example

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 6 & 11 \\
2 & 7 & 12 \\
3 & 8 & 13 \\
4 & 9 & 14 \\
5 & 10 & 15
\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}
35.127 & 0 & 0 \\
0 & 2.47 & 0 \\
0 & 0 & 0.0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& U=\left(\begin{array}{ccccc}
-0.355 & 0.689 & 0.57 & -0.176 & 0.21 \\
-0.399 & 0.376 & -0.745 & 0.224 & 0.307 \\
-0.443 & 0.0624 & -0.17 & -0.365 & -0.799 \\
-0.487 & -0.251 & 0.297 & 0.765 & -0.163 \\
-0.531 & -0.564 & 0.049 & -0.447 & 0.445
\end{array}\right) \\
& V=\left(\begin{array}{ccc}
-0.202 & -0.89 & 0.408 \\
-0.517 & -0.257 & -0.816 \\
-0.832 & 0.376 & 0.408
\end{array}\right)
\end{aligned}
$$

Solving a linear system with SVD: an example

Let's solve $A x=b$ with:
$b=\left(\begin{array}{l}5 \\ 5 \\ 5 \\ 5 \\ 5\end{array}\right) \quad d=U^{T} b=\left(\begin{array}{c}-11.1 \\ 1.56 \\ 0 \\ 0 \\ 0\end{array}\right) \quad \begin{aligned} & \sigma_{1} z_{1}=d_{1} \\ & \sigma_{2} z_{2}=d_{2} \\ & z_{3}=\text { whatever }=0 \\ & \text { Zeros, thus } b \text { is in range }(A)\end{aligned}$
$x=V z=\left(\begin{array}{c}-0.5 \\ 0 \\ 0.5\end{array}\right)$ is a solution.
But, $\sigma_{3}=0$, this means that the $\mathcal{N}(A) \neq 0$
In fact, $\mathcal{N}(A)=\operatorname{span}\left(v_{3}\right)$
$x=\left(\begin{array}{c}-0.5 \\ 0 \\ 0.5\end{array}\right)+\alpha\left(\begin{array}{c}0.408 \\ -0.816 \\ 0.408\end{array}\right)$
with $\alpha \in R$

Solving a linear system with SVD: an example

Let's change b :
$b=\left(\begin{array}{l}4 \\ 5 \\ 5 \\ 5 \\ 5\end{array}\right) \quad d=U^{T} b=\left(\begin{array}{c}-10.7 \\ 0.872 \\ -0.57 \\ 0.176 \\ -0.21\end{array}\right) \quad$ Non-zero elements
b is not in the $\mathcal{R}(A) \ldots$ the system is inconsisten and there is no solution,

Approximate (least square) solution

$$
\min _{x}\|A x-b\|^{2}
$$

Solving a linear system with SVD

$$
b \in \mathcal{R}(A)
$$

We can solve system in the classical sense

$$
A \hat{x}=b
$$

b not $\in \mathcal{R}(A)$

We can solve system in the least squares sense, i.e. find

$$
\min _{x}\|A x-b\|^{2}
$$

Least squares solution of linear systems

$$
\begin{array}{r}
\sum \\
\|A x-b\|=\left\|A V V^{T} x-b\right\|=\left\|U^{T}\left(A V V^{T} x-b\right)\right\||=| | \Sigma z-d \| \\
z=V^{T} x \\
d=U^{T} b
\end{array}
$$

We want the minimum:

$$
\begin{aligned}
& \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{p}>\sigma_{p+1}=\sigma_{p+2}=\cdots=\sigma_{m} \\
& \|\Sigma z-d\|=\left(\sigma_{1} z_{1}-d_{1}\right)^{2}+\left(\sigma_{2} z_{2}-d_{2}\right)^{2}+\cdots+\left(\sigma_{p} z_{p}-d_{p}\right)^{2}+\left(d_{p+1}\right)^{2}+\cdots+\left(d_{n}\right)^{2}
\end{aligned}
$$

Minimized by:
$z_{j}=d_{j} / \sigma_{j} \quad j \leq n$ and $\sigma_{j} \neq 0$
$z_{j}=w h a t e v e r \quad j \leq n$ and $\sigma_{j}=0$
This provides the least squares solution

Matrix pseudoinverse

Theorem. A vector x minimizes norm $\|r\|=\|b-A x\|$ iff $r \perp$ range (A), i.e.

$$
A^{*} r=0
$$

i.e.

$$
A^{*} A x=A^{*} b
$$

So, if A is full-rank

$$
x=\left(A^{*} A\right)^{-1} A^{*} b=A^{+} b
$$

Pseudoinverse (or Moore-Penrose inverse, pinv in Matlab)

Pseudoinverse with SVD

$$
A^{+}=V \Sigma^{+} U^{*}
$$

If A is full rank

$$
\sigma_{i}^{+}=\frac{1}{\sigma_{i}}
$$

If A is not full rank

$$
\begin{aligned}
& \sigma_{i}^{+}=\frac{1}{\sigma_{i}} \text { if } \sigma_{i} \neq 0 \\
& \sigma_{i}^{+}=0 \text { if } \sigma_{i}=0
\end{aligned}
$$

Least squares solution via pseudoinverse

The solution is now given by

$$
\hat{x}=A^{+} b
$$

If A is full rank
\hat{x} is unique; it minimizes $\|b-A x\|$
If A is not full rank
\hat{x} is not unique; we can add any vector $v_{i} \in \operatorname{null}(A)$
and still have a solution $x^{*}=\hat{x}+\alpha_{1} v_{p+1}+\alpha_{2} v_{p+2}+\ldots$
In this case we are talking about least norm solution

Our example revised

$$
\begin{aligned}
& \begin{array}{l}
A=\left(\begin{array}{ccc}
1 & 6 & 11 \\
2 & 7 & 12 \\
3 & 8 & 13 \\
4 & 9 & 14 \\
5 & 10 & 15
\end{array}\right) \quad A^{+}=\left(\begin{array}{ccccc}
-0.247 & -0.133 & -0.02 & 0.0933 & 0.207 \\
-0.0667 & -0.0333 & 1.47 \cdot 10^{-17} & 0.0333 & 0.0667 \\
0.113 & 0.0667 & 0.02 & -0.0267 & -0.0733
\end{array}\right) \\
A^{+} b=\hat{x}
\end{array} \\
& b=\left(\begin{array}{l}
4 \\
5 \\
5 \\
5 \\
5
\end{array}\right) \\
& \hat{x}=\left(\begin{array}{c}
-0.253 \\
0.0667 \\
0.387
\end{array}\right) \quad \text { This is the least norm } \\
& \text { General solution }
\end{aligned}
$$

$$
A * \hat{x}=\left(\begin{array}{c}
4.4 \\
4.6 \\
4.8 \\
5.0 \\
5.2
\end{array}\right)
$$

Let's check the least square solution

$$
\|b-A \hat{x}\|=0.6325
$$

You cannot do any better than this!

Linear fit: an example

$$
\left.\left.\begin{array}{cc}
{\left[\begin{array}{cc}
x & y \\
\hline & \\
1 & 2 \\
2 & 4 \\
3 & 7 \\
4 & 7 \\
5 & 10 \\
6 & 11 \\
7 & 13 \\
8 & 16 \\
9 & 19 \\
10 & 20
\end{array}\right]} & \begin{array}{c}
1=2 a+b \\
2=4 a+b \\
3=7 a+b
\end{array} \\
\vdots \\
y_{i}=a x_{i}+b & \vdots \\
\end{array}\right] \quad \begin{array}{c}
\\
\\
\end{array}\right]
$$

$$
\left(\begin{array}{ll}
\mid & \mid \\
x & 1 \\
\mid & \mid
\end{array}\right)\binom{a}{b}=\left(\begin{array}{l}
\mid \\
y \\
\mid
\end{array}\right)
$$

Least squares solution provides the best fit

Minimizes

$$
r^{2}=\sum_{i=1}^{m}\left|a x_{i}+b-y_{i}\right|^{2}
$$

Polynomial fit

Fit to $n-1$ degree polynomial $(n<m)$

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

Rectangular Vandermonde system

$$
\left[\begin{array}{cccc}
1 & x_{1} & & x_{1}^{n-1} \\
1 & x_{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & & x_{3}^{n-1} \\
& \vdots & & \vdots \\
1 & x_{m} & \cdots & x_{m}^{n-1}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right] \approx\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Statistical interpretation

Consider a simple linear model

$$
y_{i}=a x_{i}+b+\varepsilon_{i}
$$

where x is independent variable, y is dependent variable and ε_{i} are

- independent and identically distributed variables (i.i.d.)
- belong to a distribution with mean $\mu=0$ and finite standard
 deviation σ^{2}

The least squares method is equivalent to minimizing

$$
\sum_{i} \varepsilon_{i}^{2}=\sum_{i}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}
$$

Data with errors

An exercise from one of previous years: measurements of resistance R vs. temperature T with error bars varying the range of T

$$
\begin{array}{ll}
R(T)=A+B T+C T^{2}+\ldots & A-\text { scattering by impurities } \\
& C \text { - electron-electron interactions }
\end{array}
$$

Data with errors

Consider a situation when with each y_{i} there is an associated uncertainty σ_{i}. In this case, we have to minimize

$$
\chi^{2}=\sum_{i}\left[\frac{y_{i}-\left(a x_{i}+b\right)}{\sigma_{i}}\right]^{2}
$$

In other words, $\left\{y_{i}, x_{i}\right\}$ have to be weighted by σ_{i}.
This is formally justified as maximize the probability of measurements
$\left\{y_{1}, \ldots, y_{N}\right\}$ given the normally distributed PDF

$$
f\left(y_{1}, \ldots, y_{N} \mid a, b\right) \propto \exp \left[-\sum_{i} \frac{\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}}{2 \sigma_{i}}\right]
$$

or equivalently, the corresponding log-likelihood function

$$
\ln L\left(a, b \mid y_{1}, \ldots, y_{N}\right)=-\frac{1}{2} \sum_{i} \frac{\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}}{\sigma_{i}}=-\frac{1}{2} \chi^{2}
$$

Weighted least squares regression

$y(x)=\sum_{k=0}^{M-1} a_{k} X_{k}(x)$
\longleftarrow basis functions
$X_{0}(\quad) \quad X_{1}(\quad) \quad \cdots \quad X_{M-I}(\quad)$

$\chi^{2}=\sum_{i=0}^{N-1}\left[\frac{y_{i}-\sum_{k=0}^{M-1} a_{k} X_{k}\left(x_{i}\right)}{\sigma_{i}}\right]^{2}$
$A_{i j}=\frac{X_{j}\left(x_{i}\right)}{\sigma_{i}} \quad b_{i}=\frac{y_{i}}{\sigma_{i}}$
The system is then solved in least squares sense:

Fit parameters

Weighted observations Weighted design matrix

Goodness of fit

Define the reduced quantity ("goodness of fit")

$$
\chi_{v}^{2}=\frac{\chi^{2}}{v}
$$

where v is the number of degrees of freedom (number of data points minus number of fit parameters)
$\xrightarrow[\chi_{v}^{2}]{\chi_{v}^{2} \ll 1 \quad \chi_{v}^{2} \sim 1 \quad \chi_{v}^{2} \gg 1}$
probably you are the fit is good! overfitting the data
the fit does not reproduce well the data

Example

$$
\begin{aligned}
& a=1.0857 \\
& b=-0.0107 \\
& \nu=N-2 \\
& \chi^{2}=\sum_{i} \frac{\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}}{\sigma_{i}^{2}} \\
& \chi^{2}=11.2 \\
& \chi_{\nu}^{2}=\frac{\chi^{2}}{\nu}=1.2
\end{aligned}
$$

GOOD FIT

Data overfitting

Computational Physics III :: Lecture 13 :: 28.05.2020

Data underfitting

Computational Physics III :: Lecture 13 :: 28.05.2020

