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Singular Value Decomposition (SVD) 

Any m × n (m ≥ n) matrix A has a singular value decomposition (SVD)

where (in full-form SVD) 
U is the m × m unitary matrix of left-singular vectors,
V is the n × n unitary matrix of right-singular vectors,
Σ is the m × n diagonal matrix of singular values.

A =UΣV *

By convention, singular values are ordered as

with p the rank matrix A. If p = n the matrix is full-rank.
 σ 1 ≥σ 2 ≥…σ p >σ p+1 =…=σ n = 0
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Singular Value Decomposition (SVD) 
Reduced form SVD:

Full form SVD:

orthogonal vectors zeros
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Matrix properties from SVD
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A single SVD decomposition of A provides the following information:

• Rank of A (number of non-zero singular values)

•

• Induced 2-norm and Frobenius norm

• Absolute values of eigenvalues of A (if A = A*)

• Determinant

• Condition number 

• Least squares solution, dyadic expansion, matrix approximation

• …and more

 
range(A) = u1,…,up and null(A) = up+1,…,un

det(A) = σ i
i=1

m

∏
K(A) = σmax

σmin



Solving a linear system with SVD
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Solve a linear system Ax = b of m equations with n unknowns (m ≥ n) 
using singular value decomposition (full form)



Solving a linear system with SVD: an example
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Solving a linear system with SVD: an example
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Solving a linear system with SVD: an example



Solving a linear system with SVD
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We can solve system in the 
classical sense

Ax̂ = b

We can solve system in the 
least squares sense, i.e. find

min
x

Ax − b 2



Least squares solution of  linear systems
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This provides the least squares solution

Ax − b = AVV T x − b = UT AVV T x − b( ) = Σz − d

z =V T x

d =UTb

Σ



Matrix pseudoinverse
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Theorem. A vector xminimizes norm                          iff , i.e. r = b − Ax

A*r = 0

r ⊥ range(A)

i.e. 
A*Ax = A*b

So, if A is full-rank

x = A*A( )−1 A*b = A+b

Pseudoinverse (or Moore-Penrose inverse, pinv in Matlab)



Pseudoinverse with SVD
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A+ =VΣ+U*

If A is full rank

σ i
+ = 1

σ i

If A is not full rank

σ i
+ = 1

σ i

if σ i ≠ 0

σ i
+ = 0 if σ i = 0



Least squares solution via pseudoinverse
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x̂ = A+b
The solution is now given by

If A is full rank

x̂ is unique; it minimizes b − Ax

If A is not full rank

x̂ is not unique; we can add any vector
and still have a solution  

vi ∈null(A)
x* = x̂ +α1vp+1 +α 2vp+2 + ...

In this case we are talking about least norm solution



Our example revised
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Linear fit: an example
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Least squares solution provides the best fit

r2 = axi + b − yi
2

i=1

m

∑
Minimizes



Polynomial fit
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Fit to n − 1 degree polynomial (n < m)

Rectangular Vandermonde system



Statistical interpretation
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Consider a simple linear model

yi = axi + b + ε i
where x is independent variable,
y is dependent variable and     are

- independent and identically 
distributed variables (i.i.d.)

- belong to a distribution with
mean µ = 0 and finite standard
deviation σ2

The least squares method is equivalent to minimizing

ε i

ε i
2

i
∑ = yi − (axi + b)[ ]

i
∑ 2



Data with errors 
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An exercise from one of previous years: measurements of 
resistance R vs. temperature T with error bars varying the range of T

R(T) = A + BT + CT2 + … A – scattering by impurities
C – electron-electron interactions
…



Data with errors
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Consider a situation when with each yi there is an associated 
uncertainty σi. In this case, we have to minimize

In other words, {yi, xi} have to be weighted by σi.
This is formally justified as maximize the probability of measurements
{y1, …, yN} given the normally distributed PDF

or equivalently, the corresponding log-likelihood function

χ 2 = yi − (axi + b)
σ i

⎡

⎣
⎢

⎤

⎦
⎥

i
∑

2

f (y1,..., yN | a,b)∝ exp −
yi − (axi + b)( )2

2σ ii
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

lnL(a,b | y1,..., yN ) = − 1
2

yi − (axi + b)( )2
σ ii

∑ = − 1
2
χ 2



Weighted least squares regression

The system is then solved in least 
squares sense:

Weighted observations Weighted design matrix

Fit parameters
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Goodness of  fit
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Define the reduced quantity (“goodness of fit”)  

χν
2 = χ 2

ν
where ν is the number of degrees of freedom (number of data
points minus number of fit parameters)

χν
2

χν
2 <<1 χν

2 >>1χν
2 ~1

probably you are
overfitting the data 

the fit is good! the fit does not 
reproduce well 
the data 



Example
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GOOD FIT



Data overfitting
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χν
2 <<1



Data underfitting
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χν
2 >>1


