Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92132841
CFunctions.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 17, 15:51
Size
23 KB
Mime Type
text/x-python
Expires
Tue, Nov 19, 15:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22381049
Attached To
rCTRACKER ctracker3
CFunctions.py
View Options
import
numba
as
nb
from
math
import
log
,
exp
@nb.njit
(
nogil
=
True
,
parallel
=
True
)
def
newpos
(
ii
,
r0
,
ds
,
uu
,
um
):
"""
Compute new position along self.ijk direction
um: flux entering the cell
uu: flux exiting the cell
"""
if
um
!=
uu
:
Du
=
uu
-
um
mDu
=
um
/
Du
# eq. 7.8 Doos et al 2013
return
(
r0
-
ii
+
mDu
)
*
exp
(
Du
*
ds
)
+
ii
-
mDu
else
:
return
r0
+
uu
*
ds
@nb.njit
(
nogil
=
True
,
parallel
=
True
)
def
cross
(
ijk
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
r0
,
flux
):
"""
Compute crossing times
"""
# um: flux entering the cell
# uu: flux exiting the cell
# i_futr: interpolation coefficient for "future" GCM data
# i_past: interpolation coefficient for "past" GCM data
uu
,
um
,
ba
,
sp
,
sn
,
Du
,
ii
=
0
,
0
,
0
,
0
,
0
,
0
,
0
UNDEF
=
1.0e20
um
=
(
i_futr
*
flux
[
1
,
ka
,
ja
,
ia
]
+
i_past
*
flux
[
0
,
ka
,
ja
,
ia
])
if
ijk
==
1
:
ii
=
ia
uu
=
(
i_futr
*
flux
[
1
,
ka
,
ja
,
ia
+
1
]
+
i_past
*
flux
[
0
,
ka
,
ja
,
ia
+
1
])
elif
ijk
==
2
:
ii
=
ja
uu
=
(
i_futr
*
flux
[
1
,
ka
,
ja
+
1
,
ia
]
+
i_past
*
flux
[
0
,
ka
,
ja
+
1
,
ia
])
elif
ijk
==
3
:
ii
=
ka
uu
=
(
i_futr
*
flux
[
1
,
ka
+
1
,
ja
,
ia
]
+
i_past
*
flux
[
0
,
ka
+
1
,
ja
,
ia
])
# east, north or upward crossing
if
uu
>
0
and
(
r0
!=
(
ii
+
1
)):
if
um
!=
uu
:
Du
=
(
uu
-
um
)
ba
=
(
r0
-
ii
)
*
Du
+
um
if
ba
>
0
:
# eq. 7.9 & 7.6 Doos et al. 2013
sp
=
(
log
(
uu
)
-
log
(
ba
))
/
Du
# It can still be that there is a
# zero flux somewhere between r0 and
# the face
if
(
sp
<=
0.0
):
sp
=
UNDEF
else
:
sp
=
UNDEF
else
:
sp
=
(
1.0
+
ii
-
r0
)
/
uu
else
:
sp
=
UNDEF
# west, south or downward crossing
if
um
<
0
and
r0
!=
ii
:
if
um
!=
uu
:
# negative velocity, so we go from exit (uu)
# to enter (um)
Du
=
(
um
-
uu
)
# (ii)-----(r0)---(ii+1)
# (um)-----(ba)---(uu)
ba
=
(
1
+
ii
-
r0
)
*
Du
+
uu
if
ba
<
0
:
sn
=
(
log
(
-
ba
)
-
log
(
-
um
))
/
Du
# It can still be that there is a
# zero flux somewhere between r0 and
# the face
if
sn
<=
0
:
sn
=
UNDEF
else
:
sn
=
UNDEF
else
:
sn
=
(
ii
-
r0
)
/
uu
else
:
sn
=
UNDEF
return
uu
,
um
,
sp
,
sn
@nb.njit
(
nogil
=
True
,
parallel
=
True
)
def
transform
(
ii
,
jj
,
kk
,
stxyz
,
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
):
for
m
in
range
(
ii
.
size
):
transform_one
(
ii
[
m
],
jj
[
m
],
kk
[
m
],
stxyz
[
m
,
:],
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
)
@nb.njit
(
nogil
=
True
,
parallel
=
True
)
def
transform_one
(
i
,
j
,
k
,
stxyz
,
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
):
# nogil
ii
=
int
(
i
)
jj
=
int
(
j
)
kk
=
int
(
k
)
nx
=
i
%
1
ny
=
j
%
1
nz
=
k
%
1
# inside the cell
if
(
nx
>=
1e-9
)
&
(
ny
>=
1e-9
):
cosij
=
CS
[
jj
,
ii
]
sinij
=
SN
[
jj
,
ii
]
dxij
=
dX
[
jj
,
ii
]
dyij
=
dY
[
jj
,
ii
]
# x
stxyz
[
0
]
=
xG
[
jj
,
ii
]
+
\
cosij
*
dxij
*
nx
-
sinij
*
dyij
*
ny
# y
stxyz
[
1
]
=
yG
[
jj
,
ii
]
+
\
sinij
*
dxij
*
nx
+
cosij
*
dyij
*
ny
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk
,
jj
,
ii
]
+
\
nz
*
Z
[
kk
+
1
,
jj
,
ii
]
else
:
stxyz
[
2
]
=
Z
[
kk
,
jj
,
ii
]
# at the SW corner
elif
(
nx
<
1e-9
)
&
(
ny
<
1e-9
):
# x
stxyz
[
0
]
=
xG
[
jj
,
ii
]
# y
stxyz
[
1
]
=
yG
[
jj
,
ii
]
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk
,
jj
,
ii
]
+
\
nz
*
Z
[
kk
+
1
,
jj
,
ii
]
else
:
stxyz
[
2
]
=
Z
[
kk
,
jj
,
ii
]
# on W face
elif
nx
<
1e-9
:
cosij
=
CS
[
jj
,
ii
]
sinij
=
SN
[
jj
,
ii
]
dyij
=
dY
[
jj
,
ii
]
# x
stxyz
[
0
]
=
xG
[
jj
,
ii
]
-
sinij
*
dyij
*
ny
# y
stxyz
[
1
]
=
yG
[
jj
,
ii
]
+
cosij
*
dyij
*
ny
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk
,
jj
,
ii
]
+
\
nz
*
Z
[
kk
+
1
,
jj
,
ii
]
else
:
stxyz
[
2
]
=
Z
[
kk
,
jj
,
ii
]
# on S face
else
:
cosij
=
CS
[
jj
,
ii
]
sinij
=
SN
[
jj
,
ii
]
dxij
=
dX
[
jj
,
ii
]
# x
stxyz
[
0
]
=
xG
[
jj
,
ii
]
+
cosij
*
dxij
*
nx
# y
stxyz
[
1
]
=
yG
[
jj
,
ii
]
+
sinij
*
dxij
*
nx
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk
,
jj
,
ii
]
+
\
nz
*
Z
[
kk
+
1
,
jj
,
ii
]
else
:
stxyz
[
2
]
=
Z
[
kk
,
jj
,
ii
]
@nb.njit
(
nogil
=
True
,
parallel
=
True
)
def
ext_loop
(
nvals
,
ntact
,
xyz
,
ijk
,
out_xyz
,
out_tijk
,
out_dt
,
outfreq
,
nend
,
iendw
,
iende
,
jendn
,
jends
,
imax
,
jmax
,
kmax
,
Adsmax
,
Adxyz
,
dtmax
,
dstep
,
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
,
uflux
,
vflux
,
wflux
,
out_code
):
ds
,
dse
,
dsw
,
dsn
,
dss
,
dsu
,
dsd
=
0
,
0
,
0
,
0
,
0
,
0
,
0
for
ntrac
in
range
(
ntact
):
# initialize stuff
ts
=
0.0
# normalised time between two GCM time steps
tt
=
0.0
# time in seconds between two GCM time steps
# output init
for
kk
in
range
(
nvals
):
out_tijk
[
ntrac
,
kk
,
0
]
=
-
1e20
rec_out
=
0
# take coord
# the coordinate system is as follows:
# cell i
# |---------------------|
# i i <= x < i+1 i+1
x1
=
xyz
[
ntrac
,
0
]
y1
=
xyz
[
ntrac
,
1
]
z1
=
xyz
[
ntrac
,
2
]
ib
=
ijk
[
ntrac
,
0
]
jb
=
ijk
[
ntrac
,
1
]
kb
=
ijk
[
ntrac
,
2
]
while
True
:
# time interpolation constants
i_futr
=
ts
%
1.0
i_past
=
1.0
-
i_futr
x0
=
x1
y0
=
y1
z0
=
z1
ia
=
ib
ja
=
jb
ka
=
kb
dsmax
=
Adsmax
[
kb
,
jb
,
ib
]
dxyz
=
Adxyz
[
kb
,
jb
,
ib
]
# make sure we do not start from land
# TODO do we still need this?
if
dxyz
==
0.0
:
print
(
"
\n
x0:
%f
\n
"
,
x0
)
print
(
"y0:
%f
\n
"
,
y0
)
print
(
"z0:
%f
\n
"
,
z0
)
print
(
"ia:
%d
\n
"
,
ia
)
print
(
"ja:
%d
\n
"
,
ja
)
print
(
"ka:
%d
\n
"
,
ka
)
print
(
"x1:
%f
\n
"
,
x1
)
print
(
"y1:
%f
\n
"
,
y1
)
print
(
"z1:
%f
\n
"
,
z1
)
print
(
"ib:
%d
\n
"
,
ib
)
print
(
"jb:
%d
\n
"
,
jb
)
print
(
"kb:
%d
\n
"
,
kb
)
print
(
"ds:
%f
\n
"
,
ds
)
print
(
"dsmax:
%f
\n
"
,
dsmax
)
print
(
"dxyz:
%f
\n
"
,
dxyz
)
print
(
"dsn:
%f
\n
"
,
dsn
)
print
(
"dss:
%f
\n
"
,
dss
)
print
(
"dse:
%f
\n
"
,
dse
)
print
(
"dsw:
%f
\n
"
,
dsw
)
print
(
"dsu:
%f
\n
"
,
dsu
)
print
(
"dsd:
%f
\n
"
,
dsd
)
raise
ValueError
(
"Particule on land"
)
#
# calculate the 3 crossing times over the box
# choose the shortest time and calculate the
# new positions
#
# solving the differential equations
# note:
# space variables (x,...) are dimensionless
# time variables (ds,...) are in seconds/m^3
#
uu1
,
um1
,
dse
,
dsw
=
\
cross
(
1
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
x0
,
uflux
)
vu1
,
vm1
,
dsn
,
dss
=
\
cross
(
2
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
y0
,
vflux
)
wu1
,
wm1
,
dsu
,
dsd
=
\
cross
(
3
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
z0
,
wflux
)
ds
=
min
(
min
(
min
(
min
(
min
(
min
(
dse
,
dsw
),
dsn
),
dss
),
dsd
),
dsu
),
dsmax
)
if
(
ds
==
0.0
)
or
(
ds
==
1e20
):
print
(
"
\n
x0:
%f
\n
"
,
x0
)
print
(
"y0:
%f
\n
"
,
y0
)
print
(
"z0:
%f
\n
"
,
z0
)
print
(
"ia:
%d
\n
"
,
ia
)
print
(
"ja:
%d
\n
"
,
ja
)
print
(
"ka:
%d
\n
"
,
ka
)
print
(
"x1:
%f
\n
"
,
x1
)
print
(
"y1:
%f
\n
"
,
y1
)
print
(
"z1:
%f
\n
"
,
z1
)
print
(
"ib:
%d
\n
"
,
ib
)
print
(
"jb:
%d
\n
"
,
jb
)
print
(
"kb:
%d
\n
"
,
kb
)
print
(
"ds:
%f
\n
"
,
ds
)
print
(
"dsmax:
%f
\n
"
,
dsmax
)
print
(
"dxyz:
%f
\n
"
,
dxyz
)
print
(
"dsn:
%f
\n
"
,
dsn
)
print
(
"dss:
%f
\n
"
,
dss
)
print
(
"dse:
%f
\n
"
,
dse
)
print
(
"dsw:
%f
\n
"
,
dsw
)
print
(
"dsu:
%f
\n
"
,
dsu
)
print
(
"dsd:
%f
\n
"
,
dsd
)
raise
ValueError
(
"Cannot integrate track for unknown reasons
\n
"
)
# now update the time
dt
=
ds
*
dxyz
# if time step makes the integration time
# very close to the GCM output
if
(
tt
+
dt
)
>=
out_dt
:
dt
=
out_dt
-
tt
tt
=
out_dt
ts
=
1.0
ds
=
dt
/
dxyz
end_loop
=
True
else
:
end_loop
=
False
tt
+=
dt
if
dt
==
dtmax
:
ts
+=
dstep
else
:
ts
+=
dt
/
out_dt
# compute new time interpolation constant
in_futr
=
ts
%
1.0
in_past
=
1.0
-
in_futr
# now we actually compute the new position
# eastward grid-cell exit
if
ds
==
dse
:
scrivi
=
1
# if at the "new time" the flow at the cell
# face is positive the particle will exit
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
# TODO: corner cases are extremely rare, but
# may happen. Is there a better way to deal with them?
if
(
y1
-
ja
)
>=
1
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
if
(
z1
-
ka
)
>=
1
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# westward grid-cell exit
elif
ds
==
dsw
:
scrivi
=
1
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
if
(
y1
-
ja
)
>=
1
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
if
(
z1
-
ka
)
>=
1
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# northward grid-cell exit
elif
ds
==
dsn
:
scrivi
=
1
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
float
(
ja
+
1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
z1
-
ka
)
>=
1
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# southward grid-cell exit
elif
ds
==
dss
:
scrivi
=
1
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
float
(
ja
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
z1
-
ka
)
>=
1
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# upward grid-cell exit
elif
ds
==
dsu
:
scrivi
=
1
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
float
(
ka
+
1
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
y1
-
ja
)
>=
1
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
# downward grid-cell exit
elif
ds
==
dsd
:
scrivi
=
1
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
float
(
ka
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
y1
-
ja
)
>=
1
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
elif
end_loop
or
(
ds
==
dsmax
):
scrivi
=
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# TODO for 2D advection we will need to include
# the check for convergence/divergence zones
else
:
print
(
"
\n
Unrecognised ds
\n
"
)
print
(
"ds:
%f
\n
"
,
ds
)
print
(
"dsmax:
%f
\n
"
,
dsmax
)
print
(
"dxyz:
%f
\n
"
,
dxyz
)
print
(
"dsn:
%f
\n
"
,
dsn
)
print
(
"dss:
%f
\n
"
,
dss
)
print
(
"dse:
%f
\n
"
,
dse
)
print
(
"dsw:
%f
\n
"
,
dsw
)
print
(
"dsu:
%f
\n
"
,
dsu
)
print
(
"dsd:
%f
\n
"
,
dsd
)
raise
ValueError
(
"
\n
Unrecognised ds
\n
"
)
# check if particle entered a kill area
kill_area
=
0
for
kk
in
range
(
nend
):
if
(
iendw
[
kk
]
<=
x1
)
and
\
(
x1
<=
iende
[
kk
])
and
\
(
jends
[
kk
]
<=
y1
)
and
\
(
y1
<=
jendn
[
kk
]):
# we store the region where it was killed
kill_area
=
10
+
kk
break
# break the for loop over kill areas
if
kill_area
>
0
:
# write to buffer
if
rec_out
>=
nvals
:
raise
ValueError
(
"Kill region: buffer finished, make it larger!"
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
out_code
[
ntrac
]
=
kill_area
transform_one
(
x1
,
y1
,
z1
,
out_xyz
[
ntrac
,
rec_out
,
:],
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
)
rec_out
+=
1
break
# break particle loop
# check if the particle is still
# inside the domain
if
(
ib
>
imax
)
or
(
ib
<
0
)
or
\
(
jb
>
jmax
)
or
(
jb
<
0
):
# write to buffer
if
rec_out
>=
nvals
:
raise
ValueError
(
"Exit domain: buffer finished, make it larger!"
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
out_code
[
ntrac
]
=
1
transform_one
(
x1
,
y1
,
z1
,
out_xyz
[
ntrac
,
rec_out
,
:],
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
)
rec_out
+=
1
break
# check if the particle exited through the top
if
kb
>=
kmax
:
# write to buffer
# TODO there should be a better way to deal with the
# top boundary condition
if
rec_out
>=
nvals
:
raise
ValueError
(
"Airborne: buffer finished, make it larger!"
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
out_code
[
ntrac
]
=
2
transform_one
(
x1
,
y1
,
z1
,
out_xyz
[
ntrac
,
rec_out
,
:],
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
)
rec_out
+=
1
break
# At the end of the cycle we can write the
# position of the particle in buffer
# gcmstep => outfreq == 1
# always => outfreq == 2
# cross => outfreq == 3
if
((
tt
==
out_dt
)
and
(
outfreq
==
1
))
\
or
((
outfreq
==
3
)
and
(
scrivi
==
1
))
\
or
((
outfreq
==
2
)
and
(
ts
>
0.0
)):
# write to buffer
if
rec_out
>=
nvals
:
raise
ValueError
(
"Normal write: buffer finished, make it larger!"
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
transform_one
(
x1
,
y1
,
z1
,
out_xyz
[
ntrac
,
rec_out
,
:],
CS
,
SN
,
dX
,
dY
,
xG
,
yG
,
Z
)
xyz
[
ntrac
,
0
]
=
x1
xyz
[
ntrac
,
1
]
=
y1
xyz
[
ntrac
,
2
]
=
z1
ijk
[
ntrac
,
0
]
=
ib
ijk
[
ntrac
,
1
]
=
jb
ijk
[
ntrac
,
2
]
=
kb
rec_out
+=
1
break
@nb.njit
(
nogil
=
True
,
parallel
=
True
)
def
loc_time_fast
(
timeax
,
N
,
time
,
is_monotonic
):
loc_time
=
-
9999999
# We go backwards since the time we are looking for
# is usually towards the end
for
ii
in
range
(
N
-
1
,
-
1
,
-
1
):
if
abs
(
timeax
[
ii
]
-
time
)
<=
1.0e-9
:
# we found it
return
ii
# the axis is monotonic, so if we find a value
# smaller than time, it means there is no time in
# the axis
elif
is_monotonic
and
(
timeax
[
ii
]
<
time
):
return
loc_time
return
loc_time
Event Timeline
Log In to Comment