Page MenuHomec4science

ctracker.py
No OneTemporary

File Metadata

Created
Sun, Nov 17, 18:49

ctracker.py

#!/usr/bin/env python
from __future__ import division, print_function
###########################################################################
# #
# Copyright 2017 Andrea Cimatoribus #
# EPFL ENAC IIE ECOL #
# GR A1 435 (Batiment GR) #
# Station 2 #
# CH-1015 Lausanne #
# Andrea.Cimatoribus@epfl.ch #
# #
# This file is part of ctracker #
# #
# ctracker is free software: you can redistribute it and/or modify it #
# under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# (at your option) any later version. #
# #
# ctracker is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty #
# of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. #
# See the GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with ctracker. If not, see <http://www.gnu.org/licenses/>. #
# #
###########################################################################
import numpy as np
from tracker.modules.writetools import loc_time_fast
class ctracker(object):
def __init__(self, config_file):
from os.path import join
from xmitgcm import open_mdsdataset as mitgcmds
from tracker.modules import transform, transform_cartesian
print("\nInitializing GCM information from %s" % config_file)
if config_file.endswith(".py"):
config_file = config_file[:-3]
# load configuration
import configuration as d
# exec("import {0} as d".format(config_file))
print("\nConfiguration loaded.")
#
# initialize stuff
#
if not d.u_root.endswith('.'):
d.u_root += '.'
if not d.v_root.endswith('.'):
d.v_root += '.'
if not d.w_root.endswith('.'):
d.w_root += '.'
self.u_root = join(d.gcm_directory, d.u_root)
self.v_root = join(d.gcm_directory, d.v_root)
self.w_root = join(d.gcm_directory, d.w_root)
self.out_prec = d.out_prec
# store some info
self.gcm_dt = d.gcm_dt
if d.gcm_geometry in ("curvilinear", "cartesian"):
self.gcm_geometry = d.gcm_geometry
else:
raise ValueError("Unrecognised MITgcm geometry")
self.out_dt = d.out_dt
d.outfile = d.outfile.rstrip(".nc")
self.inoutfile = d.outfile + "_inout.nc"
self.runfile = d.outfile + "_run.nc"
if d.outfreq in ("gcmstep", "always", "cross"):
if d.outfreq == "gcmstep":
self.outfreq = 1
self.out_gcmstep = d.out_gcmstep
elif d.outfreq == "always":
self.outfreq = 2
self.out_gcmstep = 0
elif d.outfreq == "cross":
self.outfreq = 3
self.out_gcmstep = 0
else:
raise ValueError("Outfreq not recognised")
self.subiters = int(d.subiters)
self.dstep = 1.0/self.subiters
self.dtmax = self.out_dt * self.dstep
if float(d.ff) not in [1.0, -1.0]:
raise ValueError("ff controls the time direction, "
"it can only be +1 or -1")
self.ff = float(d.ff)
if self.ff == -1.0:
raise ValueError("Not implemented")
self.gcm_start = np.datetime64(d.gcm_start)
print("\nReference date of GCM:", self.gcm_start)
self.start = np.datetime64(d.start)
print("\nBegin particle tracking simulation at:", self.start)
self.end = np.datetime64(d.end)
print("\nEnd particle tracking simulation at:", self.end)
self.seed_start = np.datetime64(d.seed_start)
print("\nStart seeding particles at:", self.seed_start)
self.seed_end = np.datetime64(d.seed_end)
print("\nStop seeding particles at:", self.seed_end)
self.is2D = d.is2D;
print("\nSimulation in 2D : ", self.is2D)
# open data directory to load grid data
self.grid = mitgcmds(d.gcm_directory, read_grid=True,
iters=[], prefix=[d.u_root, d.v_root, d.w_root],
swap_dims=False, geometry=self.gcm_geometry,
ref_date=self.gcm_start, delta_t=self.gcm_dt)
# load metrics to compute the conversion from fractional index
# to physical coordinate
self.xG = self.grid.XG.to_masked_array().filled(0).astype("float32")
self.yG = self.grid.YG.to_masked_array().filled(0).astype("float32")
self.dX = self.grid.dxG.to_masked_array().filled(0).astype("float32")
self.dY = self.grid.dyG.to_masked_array().filled(0).astype("float32")
self.dxdy = self.grid.rA.to_masked_array().filled(0).astype("float32")
# we invert to have at the first position the bottom
self.dzt = np.ascontiguousarray((self.grid.drF * self.grid.hFacC)
.to_masked_array()
.filled(0)[::-1, :, :])
self.grid_shape = self.dzt.shape
self.kmax, self.jmax, self.imax = self.grid_shape
zG = np.zeros((self.kmax + 1, self.jmax, self.imax))
zG[1:, ...] = np.cumsum(self.dzt[::-1], axis=0)
# tracmass has opposite Z order
zG = zG[::-1, ...]
self.Z = np.ascontiguousarray(zG).astype("float32")
self.dxyz = self.dxdy * self.dzt
if np.any(self.dxyz < 0.0):
raise ValueError("Cells with negative volume.")
if np.any((self.dxyz == 0.0) & (self.grid.hFacC[::-1, :, :] != 0.0)):
raise ValueError("Zero cell volumes.")
self.dsmax = self.dtmax / self.dxyz
self.dzu = np.ascontiguousarray((self.grid.drF *
self.grid.hFacW * self.grid.dyG)
.to_masked_array()
.filled(0)[::-1, :, :])
self.dzv = np.ascontiguousarray((self.grid.drF *
self.grid.hFacS * self.grid.dxG)
.to_masked_array()
.filled(0)[::-1, :, :])
self.kmtb = (self.grid.hFacC.sum(dim="k")).to_masked_array().filled(0)
self.kmt = np.ceil(self.kmtb).astype("int8")
self.CS = 1
self.SN = 0
if self.gcm_geometry in ("curvilinear", ):
self.CS = self.grid.CS \
.to_masked_array().filled(0).astype("float32")
self.SN = self.grid.SN \
.to_masked_array().filled(0).astype("float32")
xGp1, yGp1 = self._get_geometry()
self.grid.attrs["MITgcm_dir"] = d.gcm_directory
# we also store the full mesh with edges coordinates
self.grid.coords["i_p1"] = ("i_p1", np.arange(xGp1.shape[1]))
self.grid.coords["j_p1"] = ("j_p1", np.arange(xGp1.shape[0]))
self.grid.coords["XG_p1"] = (("j_p1", "i_p1"), xGp1)
self.grid.coords["YG_p1"] = (("j_p1", "i_p1"), yGp1)
#
# prepare the simulation
#
print("\nIdentify seeding points")
if d.inds_seed:
if np.any(d.x_seed > self.imax) or \
np.any(d.x_seed < 0) or \
np.any(d.y_seed > self.jmax) or \
np.any(d.y_seed < 0) or \
np.any(d.z_seed > self.kmax) or \
np.any(d.z_seed < 0):
raise ValueError("Seeding with indexes beyond grid limits")
self.ijk_indseed, self.ijk_seed = \
self._ijkseed(d.x_seed, d.y_seed, d.z_seed, d.inds_seed)
self.xyz_seed = np.zeros(self.ijk_seed.shape)
if self.gcm_geometry in ("curvilinear", ):
transform(self.ijk_seed[:, 0],
self.ijk_seed[:, 1],
self.ijk_seed[:, 2],
self.xG, self.yG, self.dX, self.dY,
self.CS, self.SN, self.Z,
self.xyz_seed)
else:
transform_cartesian(self.ijk_seed[:, 0],
self.ijk_seed[:, 1],
self.ijk_seed[:, 2],
self.xG, self.yG, self.dX, self.dY,
self.Z, self.xyz_seed)
self.n_seed = self.ijk_seed.shape[0]
print("\nNumber of seeding points: %d" % self.n_seed)
d.iende = np.asarray(d.iende)
d.iendw = np.asarray(d.iendw)
d.jendn = np.asarray(d.jendn)
d.jends = np.asarray(d.jends)
self.nend = d.iende.size
if (self.nend != d.iendw.size) or \
(self.nend != d.jendn.size) or \
(self.nend != d.jends.size):
raise ValueError("Wrong kill area definition")
self.iende = d.iende
self.jendn = d.jendn
self.iendw = d.iendw
self.jends = d.jends
if (d.out_dt % self.gcm_dt) != 0:
raise ValueError("The GCM output interval must be "
"a multiple of the model time step.")
# first GCM iteration
iter_i = np.floor(
(self.start - self.gcm_start)
.astype("timedelta64[s]").astype(float) /
self.gcm_dt).astype("int32")
# last GCM iteration
iter_e = np.ceil(
(self.end - self.gcm_start)
.astype("timedelta64[s]").astype(float) /
self.gcm_dt).astype("int32")
self.iters = np.arange(iter_i, iter_e + 1,
int(self.out_dt / self.gcm_dt))
if self.iters.size < 2:
raise ValueError("To start the computation, the simulation "
"must span in time at least two GCM outputs")
if (d.seed_interval % self.out_dt) != 0:
raise ValueError("The seeding interval must be "
"a multiple of the GCM step.")
self.seed_interval = d.seed_interval
print("\nSeeding interval: %ds" % self.seed_interval)
# seeding steps
seed_i = np.floor(
(self.seed_start - self.gcm_start)
.astype("timedelta64[s]").astype(float) /
self.gcm_dt).astype("int32")
seed_e = np.ceil(
(self.seed_end - self.gcm_start)
.astype("timedelta64[s]").astype(float) /
self.gcm_dt).astype("int32")
iter_seed = np.arange(seed_i, seed_e + 1,
int(self.seed_interval / self.gcm_dt))
self.iter_seed = np.intersect1d(self.iters, iter_seed)
print("\nNumber of seeding time steps: %d" % self.iter_seed.size)
self.ntrackmax = self.iter_seed.size * self.n_seed
print("\nTotal number of particles to be released: %d" %
self.ntrackmax)
# configure parallelism
if (d.n_procs % 1.0) != 0.0:
raise ValueError("The number of processes must be an integer.")
self.n_procs = int(d.n_procs)
if self.n_procs <= 1:
self.n_procs = 1
print("\nRunning numerics single threaded")
else:
print("\nRunning numerics on %d threads max" % self.n_procs)
self.n_min_part_per_thread = d.n_min_part_per_thread
print("\nRunning with %d particles per thread min" % self.n_min_part_per_thread)
print("\nInput running on a separate thread.")
print("\nOutput running on a separate thread.")
# save to netcdf, this will be the output file of the simulation
# we require NETCDF4
self.grid.to_netcdf(self.runfile,
mode="w", format="NETCDF4", engine="netcdf4")
self.complevel = int(max(0, min(9, d.complevel)))
self.chunk_id = min(int(d.chunk_id), self.ntrackmax)
self.chunk_time = int(d.chunk_time)
# end init
def _ijkseed(self, ii, jj, kk, inds):
"""
Define the ii, jj, kk indices from which particles will be
released.
ii, jj, kk: list, array, or scalar with indices (i, j, k) from which
particles will be released (must be integers).
inds: if True (default), ii, jj and kk are interpreted
as indices, otherwise they are interpreted as lists of
exact release positions
"""
from itertools import product
ii = np.atleast_1d(np.squeeze(ii))
jj = np.atleast_1d(np.squeeze(jj))
kk = np.atleast_1d(np.squeeze(kk))
if (ii.size != jj.size) or (ii.size != kk.size):
raise ValueError("ii, jj and kk must have all the same dimension.")
if inds:
return np.atleast_2d(np.asarray(zip(
np.int16(ii),
np.int16(jj),
np.int16(kk)))), \
np.atleast_2d(np.asarray(zip(ii, jj, kk)))
else:
# if MITgcm coordinates are passed, we have to load the model grid
# and then translate into the "normalised" index coordinates of
# tracmass
def xy2grid(x, y, dX, dY, C, S):
nx = (C * x + S * y) / dX
ny = (-S * x + C * y) / dY
return nx, ny
xG = self.xG
yG = self.yG
dX = self.dX
dY = self.dY
if self.gcm_geometry in ("curvilinear", ):
cs = self.CS
sn = self.SN
dZ = self.dzt
zG = self.Z
iout = np.zeros(ii.size) * np.nan
jout = np.zeros(ii.size) * np.nan
kout = np.zeros(ii.size) * np.nan
iindout = np.zeros(ii.size, dtype="int16")
jindout = np.zeros(ii.size, dtype="int16")
kindout = np.zeros(ii.size, dtype="int16")
for nn, (xx, yy, zz) in enumerate(zip(ii, jj, kk)):
jseed, iseed = np.unravel_index(
np.argmin((xx-xG)**2 + (yy-yG)**2), xG.shape)
if self.gcm_geometry in ("curvilinear", ):
nx, ny = xy2grid(xx - xG[jseed, iseed],
yy - yG[jseed, iseed],
dX[jseed, iseed], dY[jseed, iseed],
cs[jseed, iseed], sn[jseed, iseed])
else:
nx = (xx - xG[jseed, iseed]) / dX[jseed, iseed]
ny = (yy - yG[jseed, iseed]) / dY[jseed, iseed]
# check the computed nx and ny, and in case seek in
# nearby cell
if (nx < 0) or (nx > 1) or (ny < 0) or (ny > 1):
for ijtry in product(range(-5, 6), range(-5, 6)):
inew = iseed + ijtry[0]
jnew = jseed + ijtry[1]
if (inew < 0) or (jnew < 0) \
or (inew >= self.imax) or (jnew >= self.jmax):
continue
if self.gcm_geometry in ("curvilinear", ):
nx, ny = xy2grid(xx - xG[jnew, inew],
yy - yG[jnew, inew],
dX[jnew, inew], dY[jnew, inew],
cs[jnew, inew], sn[jnew, inew])
else:
nx = (xx - xG[jnew, inew]) / dX[jnew, inew]
ny = (yy - yG[jnew, inew]) / dY[jnew, inew]
if (nx >= 0) and (nx < 1) and (ny >= 0) and (ny < 1):
iseed = inew
jseed = jnew
break
else:
raise ValueError("Could not find the point "
"(x=%f, y=%f)" % (xx, yy))
z_here = zG[:, jseed, iseed]
if (zz > z_here.max()) or (zz <= z_here.min()):
print("\nPoint outside vertical bounds at "
"x,y,z=%.2f,%.2f,%.2f" % (xx, yy, zz))
continue
kk = np.where(z_here > zz)[0][-1]
nz = (zz - z_here[kk]) / (z_here[kk+1] - z_here[kk])
iindout[nn] = iseed
jindout[nn] = jseed
kindout[nn] = kk
iout[nn] = iseed + nx
jout[nn] = jseed + ny
kout[nn] = kk + nz
return np.atleast_2d(np.asarray(zip(
iindout[np.isfinite(iout)],
jindout[np.isfinite(jout)],
kindout[np.isfinite(kout)]))), \
np.atleast_2d(np.asarray(zip(
iout[np.isfinite(iout)],
jout[np.isfinite(jout)],
kout[np.isfinite(kout)])))
# end _ijkseed
def _get_geometry(self):
"""
Convenience function returning XG and YG of mitgcm
"""
xG = np.zeros((self.jmax + 1, self.imax + 1))
yG = np.zeros((self.jmax + 1, self.imax + 1))
xG[:-1, :-1] = self.xG
yG[:-1, :-1] = self.yG
dxG = self.dX
dyG = self.dY
if self.gcm_geometry == "curvilinear":
cs = self.CS
sn = self.SN
# Fill (approximate) end points of the grid
xG[:-1, -1] = xG[:-1, -2] + dxG[:, -1] * cs[:, -1]
xG[-1, :-1] = xG[-2, :-1] - dyG[-1, :] * sn[-1, :]
# we lack the last metric at the NE corner, so we use the
# nearby metric
xG[-1, -1] = xG[-1, -2] + dxG[-1, -1] * cs[-1, -1]
yG[-1, :-1] = yG[-2, :-1] + dyG[-1, :] * cs[-1, :]
yG[:-1, -1] = yG[:-1, -2] + dxG[:, -1] * sn[:, -1]
yG[-1, -1] = yG[-2, -1] + dyG[-1, -1] * cs[-1, -1]
elif self.gcm_geometry == "cartesian":
# Fill (approximate) end points of the grid
xG[:-1, -1] = xG[:-1, -2] + dxG[:, -1]
xG[-1, :] = xG[-2, :]
yG[-1, :-1] = yG[-2, :-1] + dyG[-1, :]
yG[:, -1] = yG[:, -2]
else:
raise ValueError("Grid geometry not recognised.")
return xG, yG
# end _get_geometry
def _nc_init(self, nc_f, kind):
if kind == "inout":
# store info on kill areas
nc_f.setncattr("i_endw", self.iendw)
nc_f.setncattr("i_ende", self.iende)
nc_f.setncattr("j_endn", self.jendn)
nc_f.setncattr("j_ends", self.jends)
# id
nc_f.createDimension("pid", size=self.ntrackmax)
nc_f.createVariable("pid", "int32", ("pid",))
ncvar = nc_f.variables["pid"]
ncvar[:] = np.arange(1, self.ntrackmax + 1)
ncvar.setncattr("long_name", "particle ID")
# exit code
nc_f.createVariable("outc", "i2", ("pid",))
ncvar = nc_f.variables["outc"]
ncvar.setncattr("code -1", "not released")
ncvar.setncattr("code 0", "still active")
ncvar.setncattr("code 1", "out of the horizontal domain")
ncvar.setncattr("code 2", "particle reached the surface")
ncvar.setncattr("code 10+N", "reached N-th kill region")
ncvar[:] = -1
# time of seeding
nc_f.createVariable("t_ini", "float64", ("pid",), fill_value=-1.0)
ncvar = nc_f.variables["t_ini"]
ncvar.setncattr("units", ("seconds since %s" %
self.gcm_start.astype("datetime64[s]"))
.replace("T", " "))
# end time
nc_f.createVariable("t_end", "float64", ("pid",), fill_value=-1.0)
ncvar = nc_f.variables["t_end"]
ncvar.setncattr("units", ("seconds since %s" %
self.gcm_start.astype("datetime64[s]"))
.replace("T", " "))
# i-position at seeding
nc_f.createVariable("i_ini", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["i_ini"]
ncvar.setncattr("units", "fractional cell_index")
# j-position at seeding
nc_f.createVariable("j_ini", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["j_ini"]
ncvar.setncattr("units", "fractional cell_index")
# k-position at seeding
nc_f.createVariable("k_ini", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["k_ini"]
ncvar.setncattr("units", "fractional cell_index")
# x-position at seeding
nc_f.createVariable("x_ini", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["x_ini"]
ncvar.setncattr("units", "GCM grid units")
# y-position at seeding
nc_f.createVariable("y_ini", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["y_ini"]
ncvar.setncattr("units", "GCM grid units")
# z-position at seeding
nc_f.createVariable("z_ini", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["z_ini"]
ncvar.setncattr("units", "GCM grid units")
# i-position at exit
nc_f.createVariable("i_end", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["i_end"]
ncvar.setncattr("units", "fractional cell_index")
# j-position at exit
nc_f.createVariable("j_end", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["j_end"]
ncvar.setncattr("units", "fractional cell_index")
# k-position at exit
nc_f.createVariable("k_end", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["k_end"]
ncvar.setncattr("units", "fractional cell_index")
# x-position at exit
nc_f.createVariable("x_end", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["x_end"]
ncvar.setncattr("units", "GCM grid units")
# y-position at exit
nc_f.createVariable("y_end", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["y_end"]
ncvar.setncattr("units", "GCM grid units")
# z-position at exit
nc_f.createVariable("z_end", "float32", ("pid",),
zlib=True, complevel=self.complevel,
shuffle=True)
ncvar = nc_f.variables["z_end"]
ncvar.setncattr("units", "GCM grid units")
elif kind == "run":
# id
nc_f.createDimension("pid", size=self.ntrackmax)
nc_f.createVariable("pid", "int32", ("pid",))
ncvar = nc_f.variables["pid"]
ncvar[:] = np.arange(1, self.ntrackmax + 1)
ncvar.setncattr("long_name", "particle ID")
# time
nc_f.createDimension("time", size=None)
nc_f.createVariable("time", "float64", ("time",))
ncvar = nc_f.variables["time"]
ncvar.setncattr("units", ("seconds since %s" %
self.gcm_start.astype("datetime64[s]"))
.replace("T", " "))
# write times are highly dependent on the chunking in use
chunks = (self.chunk_id, self.chunk_time)
# itrack
nc_f.createVariable("itrack", "float32", ("pid", "time"),
zlib=True, complevel=self.complevel,
shuffle=True, chunksizes=chunks)
ncvar = nc_f.variables["itrack"]
ncvar.setncattr("units", "fractional cell_index")
# jtrack
nc_f.createVariable("jtrack", "float32", ("pid", "time"),
zlib=True, complevel=self.complevel,
shuffle=True, chunksizes=chunks)
ncvar = nc_f.variables["jtrack"]
ncvar.setncattr("units", "fractional cell_index")
# ktrack
nc_f.createVariable("ktrack", "float32", ("pid", "time"),
zlib=True, complevel=self.complevel,
shuffle=True, chunksizes=chunks)
ncvar = nc_f.variables["ktrack"]
ncvar.setncattr("units", "fractional cell_index")
# xtrack
nc_f.createVariable("xtrack", "float32", ("pid", "time"),
zlib=True, complevel=self.complevel,
shuffle=True, chunksizes=chunks)
ncvar = nc_f.variables["xtrack"]
ncvar.setncattr("units", "GCM grid units")
# ytrack
nc_f.createVariable("ytrack", "float32", ("pid", "time"),
zlib=True, complevel=self.complevel,
shuffle=True, chunksizes=chunks)
ncvar = nc_f.variables["ytrack"]
ncvar.setncattr("units", "GCM grid units")
# ztrack
nc_f.createVariable("ztrack", "float32", ("pid", "time"),
zlib=True, complevel=self.complevel,
shuffle=True, chunksizes=chunks)
ncvar = nc_f.variables["ztrack"]
ncvar.setncattr("units", "GCM grid units")
else:
raise ValueError("Unrecognised case")
nc_f.sync()
# end _nc_init
def _nc_write_one_time(self, nc_f, time, ids, ijk, xyz,
outc=None, init=False):
# The particle ids start from 1, python index from 0
ids -= 1
if init:
nc_f.variables["t_ini"][ids] = time
nc_f.variables["outc"][ids] = 0
nc_f.variables["i_ini"][ids] = ijk[:, 0]
nc_f.variables["j_ini"][ids] = ijk[:, 1]
nc_f.variables["k_ini"][ids] = ijk[:, 2]
nc_f.variables["x_ini"][ids] = xyz[:, 0]
nc_f.variables["y_ini"][ids] = xyz[:, 1]
nc_f.variables["z_ini"][ids] = xyz[:, 2]
elif np.any(outc > 0): # particles exit
nonzerooc = outc > 0
nc_f.variables["t_end"][ids[nonzerooc]] = time
nc_f.variables["outc"][ids[nonzerooc]] = outc[nonzerooc]
nc_f.variables["i_end"][ids] = ijk[:, 0]
nc_f.variables["j_end"][ids] = ijk[:, 1]
nc_f.variables["k_end"][ids] = ijk[:, 2]
nc_f.variables["x_end"][ids] = xyz[:, 0]
nc_f.variables["y_end"][ids] = xyz[:, 1]
nc_f.variables["z_end"][ids] = xyz[:, 2]
else:
tind = self._loc_time(nc_f, time)
nc_f.variables["itrack"][ids, tind] = ijk[:, 0]
nc_f.variables["jtrack"][ids, tind] = ijk[:, 1]
nc_f.variables["ktrack"][ids, tind] = ijk[:, 2]
nc_f.variables["xtrack"][ids, tind] = xyz[:, 0]
nc_f.variables["ytrack"][ids, tind] = xyz[:, 1]
nc_f.variables["ztrack"][ids, tind] = xyz[:, 2]
def _loc_time(self, nc_f, time):
ind = loc_time_fast(self.nc_time, self.nc_time.size,
time, False)
if ind >= 0:
return ind
else:
# We did not find the time we are looking for,
# so we add it to the time axis
# both in memory and on disk
self.nc_time = np.append(self.nc_time, time)
ind = self.nc_time.size - 1
nc_f.variables["time"][ind] = time
return ind
def run(self):
"""
Main function
"""
print("\nStarting ctracker")
self.max_id = 0
# Total number of active particles
self._ntact = 0
# Number of particles which exited the domain
self._ntout = 0
# array with particle ids
active_ids = np.array([], dtype="int64")
# input/output position of particles
xyz = np.zeros((0, 3), dtype="float64")
ijk = np.zeros((0, 3), dtype="int16")
# this is a copy in memory of the NETcdf time
# it is useful to find the index where to write
# data without reading from disk
self.nc_time = np.array([], dtype="float64")
# determine size of output buffer
if self.outfreq == 1:
nvals = 1
elif self.outfreq == 2:
nvals = 10 * self.subiters
will_write = 2
elif self.outfreq == 3:
nvals = 15 # this should be a safe maximum
will_write = 3
# buffer to store the codes telling if/how the particle
# exited the computation
out_code = np.zeros(self._ntact, dtype="short")
out_tijk = np.zeros((self._ntact, nvals, 4),
dtype="f8")
out_xyz = np.zeros((self._ntact, nvals, 3),
dtype="f8")
# the queue for the input data
# we do not want to load too many files,
# otherwise we would fill in the memory very quickly
INq = Queue(maxsize=3)
# define the worker loading the input
def INworker():
for ngi in range(1, self.iters.size):
it_old = self.iters[ngi - 1]
it_new = self.iters[ngi]
# define flux arrays
uflux = np.zeros((2, self.kmax, self.jmax, self.imax + 1),
"float64")
vflux = np.zeros((2, self.kmax, self.jmax + 1, self.imax),
"float64")
wflux = np.zeros((2, self.kmax + 1, self.jmax, self.imax),
"float64")
# read old GCM step for interpolating
fstamp = "%010d.data" % it_old
uflux[0, :, :, :-1] = np.fromfile(self.u_root + fstamp,
dtype=self.out_prec) \
.reshape(self.grid_shape)[::-1, ...] * self.dzu * self.ff
vflux[0, :, :-1, :] = np.fromfile(self.v_root + fstamp,
dtype=self.out_prec) \
.reshape(self.grid_shape)[::-1, ...] * self.dzv * self.ff
if not self.is2D:
wflux[0, 1:, :, :] = np.fromfile(self.w_root + fstamp,
dtype=self.out_prec) \
.reshape(self.grid_shape)[::-1, ...] * self.dxdy * self.ff
# read new GCM step for interpolating
fstamp = "%010d.data" % it_new
uflux[1, :, :, :-1] = np.fromfile(self.u_root + fstamp,
dtype=self.out_prec) \
.reshape(self.grid_shape)[::-1, ...] * self.dzu * self.ff
vflux[1, :, :-1, :] = np.fromfile(self.v_root + fstamp,
dtype=self.out_prec) \
.reshape(self.grid_shape)[::-1, ...] * self.dzv * self.ff
if not self.is2D:
wflux[1, 1:, :, :] = np.fromfile(self.w_root + fstamp,
dtype=self.out_prec) \
.reshape(self.grid_shape)[::-1, ...] * self.dxdy * self.ff
INq.put((ngi, uflux.copy(), vflux.copy(), wflux.copy()))
# start the input thread
INt = Thread(target=INworker)
INt.daemon = True
INt.start()
# the queue where we put the output data
# which will be processed by a separate thread
# we set a maximum size to avoid using too much memory
OUTq = Queue(maxsize=10)
# define the worker which does the output work
def OUTworker():
ncall = 0
while True:
if OUTq.full():
print("Warning: output queue is full "
"(slows down the execution).")
ncall += 1
t0, out_tijk, out_xyz, active_ids, out_code, init = OUTq.get()
if init:
self._nc_write_one_time(nc_inout, t0, active_ids,
self.ijk_seed, self.xyz_seed,
init=True)
OUTq.task_done()
else:
# write to netCDF4 file
# identify writing times
# (usually, only 1 or a few different)
towrite = out_tijk[:, :, 0] >= 0
wtimes = np.unique(out_tijk[towrite, 0])
for wtime in wtimes:
# if outfreq is 1, we know there is only one record
# to be written
if self.outfreq == 1:
# particles running
positions = (out_tijk[:, 0, 0] == wtime) & \
(out_code == 0)
if positions.sum() > 0:
self._nc_write_one_time(
nc_run,
t0 + wtime,
active_ids[positions],
out_tijk[positions, 0, 1:],
out_xyz[positions, 0, :],
outc=out_code[positions])
# particles exiting
positions = (out_tijk[:, 0, 0] == wtime) & \
(out_code > 0)
if positions.sum() > 0:
self._nc_write_one_time(
nc_inout,
t0 + wtime,
active_ids[positions],
out_tijk[positions, 0, 1:],
out_xyz[positions, 0, :],
outc=out_code[positions])
else:
# TODO
raise ValueError("Unimplemented")
OUTq.task_done()
# once in a while, make sure we sync to disk
# this is important for reading the output
# while a simulation is still running
if (ncall % 100) == 0:
nc_inout.sync()
nc_run.sync()
ncall = 0
# end def OUTworker
# start the output thread
OUTt = Thread(target=OUTworker)
OUTt.daemon = True
OUTt.start()
# open file for output
with Dataset(self.inoutfile, mode="w") as nc_inout, \
Dataset(self.runfile, mode="r+") as nc_run:
self._nc_init(nc_inout, "inout")
self._nc_init(nc_run, "run")
#
# Start time loop over GCM output steps
#
print("\nStart main loop\n")
for ngi in range(1, self.iters.size):
# we are starting from the start!
# even if we will read the following
# gcm output for interpolating
it_old = self.iters[ngi - 1]
t0 = it_old * self.gcm_dt
# get data from the queue
ngiQ, uflux, vflux, wflux = INq.get()
if ngiQ != ngi:
raise ValueError("Queue provides wrong timestep")
if self.outfreq == 1:
# will we actually do output at this iteration?
# note that if a particle exits the domain,
# it is written in any case
if (ngi % self.out_gcmstep) == 0:
will_write = 1 # write
else:
will_write = 0 # don't write
# remove particles that went out of the domain or other
del_index = out_code == 0
n_remove = (~del_index).sum()
if n_remove:
active_ids = active_ids[del_index]
xyz = xyz[del_index, ...]
ijk = ijk[del_index, ...]
self._ntout += n_remove
self._ntact = active_ids.size
# the active particles number changed, so
# we update the buffer size
out_code = np.zeros(self._ntact, dtype="short")
out_tijk = np.zeros((self._ntact, nvals, 4),
dtype="f8")
out_xyz = np.zeros((self._ntact, nvals, 3),
dtype="f8")
if it_old in self.iter_seed:
new_ids = np.arange(self.max_id + 1,
self.max_id + 1 + self.n_seed,
dtype="int64")
active_ids = np.append(active_ids, new_ids)
xyz = np.vstack([xyz,
self.ijk_seed])
ijk = np.vstack([ijk,
np.int16(self.ijk_indseed)])
self.max_id = self.max_id + self.n_seed
# we store the seeding position
OUTq.put((t0,
None,
None,
new_ids.copy(),
None,
True))
self._ntact = active_ids.size
# the active particles number changed, so
# we update the buffer size
out_code = np.zeros(self._ntact, dtype="short")
out_tijk = np.zeros((self._ntact, nvals, 4),
dtype="f8")
out_xyz = np.zeros((self._ntact, nvals, 3),
dtype="f8")
print("\n", self.gcm_start +
np.timedelta64(int(t0 * 1000), "[ms]"),
" |.... active: %d ....|.... out: %d ....|" %
(self._ntact, self._ntout))
# compute tracks
# The actual computation is done in C
if self.n_procs > 1 and self._ntact >= 2*self.n_min_part_per_thread:
n_threads = self._ntact // (self.n_min_part_per_thread)
n_part_per_thread = self._ntact // n_threads
if n_threads > self.n_procs:
n_threads = self.n_procs
n_part_per_thread = self._ntact // n_threads
print(n_part_per_thread, n_threads)
# spread the computation over multiple threads
# size of data per thread defined in configuration file
# chunk = self._ntact // self.n_procs
threads = []
for npr in range(n_threads):
# two indexes that cut the data
n0 = npr * n_part_per_thread
n1 = (npr + 1) * n_part_per_thread
# Make sure we don't forget some particle
if npr == (n_threads - 1):
n1 = None
# if self.gcm_geometry in ("curvilinear", ):
trd = Thread(
target=loop_nogil,
args=(xyz[n0:n1, ...],
ijk[n0:n1, ...],
out_tijk[n0:n1, ...],
out_xyz[n0:n1, ...],
out_code[n0:n1],
self.imax,
self.jmax,
self.kmax,
self.out_dt,
self.dsmax,
self.dxyz,
uflux,
vflux,
wflux,
self.dtmax,
self.dstep,
self.nend,
self.iendw,
self.iende,
self.jends,
self.jendn,
will_write,
nvals,
self.subiters,
self.xG,
self.yG,
self.dX,
self.dY,
self.CS,
self.SN,
self.Z))
'''
else:
trd = Thread(
target=loopC_nogil,
args=(xyz[n0:n1, ...],
ijk[n0:n1, ...],
out_tijk[n0:n1, ...],
out_xyz[n0:n1, ...],
out_code[n0:n1],
self.imax,
self.jmax,
self.kmax,
self.out_dt,
self.dsmax,
self.dxyz,
uflux,
vflux,
wflux,
self.dtmax,
self.dstep,
self.nend,
self.iendw,
self.iende,
self.jends,
self.jendn,
will_write,
nvals,
self.subiters,
self.xG,
self.yG,
self.dX,
self.dY,
self.Z))'''
trd.daemon = True
trd.start()
threads.append(trd)
# wait for threads to finish (if they have not already)
[trd.join() for trd in threads]
else:
if self.gcm_geometry in ("curvilinear", ):
loop_nogil(xyz,
ijk,
out_tijk,
out_xyz,
out_code,
self.imax,
self.jmax,
self.kmax,
self.out_dt,
self.dsmax,
self.dxyz,
uflux,
vflux,
wflux,
self.dtmax,
self.dstep,
self.nend,
self.iendw,
self.iende,
self.jends,
self.jendn,
will_write,
nvals,
self.subiters,
self.xG,
self.yG,
self.dX,
self.dY,
self.CS,
self.SN,
self.Z)
else:
loopC_nogil(xyz,
ijk,
out_tijk,
out_xyz,
out_code,
self.imax,
self.jmax,
self.kmax,
self.out_dt,
self.dsmax,
self.dxyz,
uflux,
vflux,
wflux,
self.dtmax,
self.dstep,
self.nend,
self.iendw,
self.iende,
self.jends,
self.jendn,
will_write,
nvals,
self.subiters,
self.xG,
self.yG,
self.dX,
self.dY,
self.Z)
# instead of doing the netCDF writing here, we rather
# put the output in a queue, a separate thread will
# deal with it
# Note that we must store copies, otherwise we would be
# changing the output before it's written
OUTq.put((t0,
out_tijk.copy(),
out_xyz.copy(),
active_ids.copy(),
out_code.copy(),
False))
# end for cycle over iterations
# finish the output queue before closing the netcdf output file
OUTq.join()
# end with statement
print("\nSimulation ended.")
# end run

Event Timeline