Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102612215
SparseBlock.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Feb 22, 12:47
Size
23 KB
Mime Type
text/x-c++
Expires
Mon, Feb 24, 12:47 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24378132
Attached To
rDLMA Diffusion limited mixed aggregation
SparseBlock.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_BLOCK_H
#define EIGEN_SPARSE_BLOCK_H
namespace Eigen {
// Subset of columns or rows
template<typename XprType, int BlockRows, int BlockCols>
class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
{
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
typedef SparseMatrixBase<BlockType> Base;
using Base::convert_index;
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
inline BlockImpl(XprType& xpr, Index i)
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
{}
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
{}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
Index nonZeros() const
{
typedef internal::evaluator<XprType> EvaluatorType;
EvaluatorType matEval(m_matrix);
Index nnz = 0;
Index end = m_outerStart + m_outerSize.value();
for(Index j=m_outerStart; j<end; ++j)
for(typename EvaluatorType::InnerIterator it(matEval, j); it; ++it)
++nnz;
return nnz;
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
inline const XprType& nestedExpression() const { return m_matrix; }
inline XprType& nestedExpression() { return m_matrix; }
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename internal::ref_selector<XprType>::non_const_type m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
protected:
// Disable assignment with clear error message.
// Note that simply removing operator= yields compilation errors with ICC+MSVC
template<typename T>
BlockImpl& operator=(const T&)
{
EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
return *this;
}
};
/***************************************************************************
* specialization for SparseMatrix
***************************************************************************/
namespace internal {
template<typename SparseMatrixType, int BlockRows, int BlockCols>
class sparse_matrix_block_impl
: public SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> >
{
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
typedef SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> > Base;
using Base::convert_index;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
protected:
typedef typename Base::IndexVector IndexVector;
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i)
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
{}
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
{}
template<typename OtherDerived>
inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
{
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
_NestedMatrixType& matrix = m_matrix;
// This assignment is slow if this vector set is not empty
// and/or it is not at the end of the nonzeros of the underlying matrix.
// 1 - eval to a temporary to avoid transposition and/or aliasing issues
Ref<const SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, StorageIndex> > tmp(other.derived());
eigen_internal_assert(tmp.outerSize()==m_outerSize.value());
// 2 - let's check whether there is enough allocated memory
Index nnz = tmp.nonZeros();
Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block
Index block_size = end - start; // available room in the current block
Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
Index free_size = m_matrix.isCompressed()
? Index(matrix.data().allocatedSize()) + block_size
: block_size;
Index tmp_start = tmp.outerIndexPtr()[0];
bool update_trailing_pointers = false;
if(nnz>free_size)
{
// realloc manually to reduce copies
typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr());
internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr());
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start);
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start);
internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz);
internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz);
newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
matrix.data().swap(newdata);
update_trailing_pointers = true;
}
else
{
if(m_matrix.isCompressed() && nnz!=block_size)
{
// no need to realloc, simply copy the tail at its respective position and insert tmp
matrix.data().resize(start + nnz + tail_size);
internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz);
internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz);
update_trailing_pointers = true;
}
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start);
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start);
}
// update outer index pointers and innerNonZeros
if(IsVectorAtCompileTime)
{
if(!m_matrix.isCompressed())
matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz);
matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start);
}
else
{
StorageIndex p = StorageIndex(start);
for(Index k=0; k<m_outerSize.value(); ++k)
{
StorageIndex nnz_k = internal::convert_index<StorageIndex>(tmp.innerVector(k).nonZeros());
if(!m_matrix.isCompressed())
matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k;
matrix.outerIndexPtr()[m_outerStart+k] = p;
p += nnz_k;
}
}
if(update_trailing_pointers)
{
StorageIndex offset = internal::convert_index<StorageIndex>(nnz - block_size);
for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
{
matrix.outerIndexPtr()[k] += offset;
}
}
return derived();
}
inline BlockType& operator=(const BlockType& other)
{
return operator=<BlockType>(other);
}
inline const Scalar* valuePtr() const
{ return m_matrix.valuePtr(); }
inline Scalar* valuePtr()
{ return m_matrix.valuePtr(); }
inline const StorageIndex* innerIndexPtr() const
{ return m_matrix.innerIndexPtr(); }
inline StorageIndex* innerIndexPtr()
{ return m_matrix.innerIndexPtr(); }
inline const StorageIndex* outerIndexPtr() const
{ return m_matrix.outerIndexPtr() + m_outerStart; }
inline StorageIndex* outerIndexPtr()
{ return m_matrix.outerIndexPtr() + m_outerStart; }
inline const StorageIndex* innerNonZeroPtr() const
{ return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
inline StorageIndex* innerNonZeroPtr()
{ return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; }
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
const Scalar& lastCoeff() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl);
eigen_assert(Base::nonZeros()>0);
if(m_matrix.isCompressed())
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
else
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
inline const SparseMatrixType& nestedExpression() const { return m_matrix; }
inline SparseMatrixType& nestedExpression() { return m_matrix; }
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename internal::ref_selector<SparseMatrixType>::non_const_type m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
};
} // namespace internal
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
class BlockImpl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
{
public:
typedef _StorageIndex StorageIndex;
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
using Base::operator=;
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
class BlockImpl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
{
public:
typedef _StorageIndex StorageIndex;
typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
using Base::operator=;
private:
template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr, Index i);
template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr);
};
//----------
/** Generic implementation of sparse Block expression.
* Real-only.
*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef SparseMatrixBase<BlockType> Base;
using Base::convert_index;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
/** Column or Row constructor
*/
inline BlockImpl(XprType& xpr, Index i)
: m_matrix(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{}
/** Dynamic-size constructor
*/
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols))
{}
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
}
inline Scalar& coeffRef(Index index)
{
return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar coeff(Index index) const
{
return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const XprType& nestedExpression() const { return m_matrix; }
inline XprType& nestedExpression() { return m_matrix; }
Index startRow() const { return m_startRow.value(); }
Index startCol() const { return m_startCol.value(); }
Index blockRows() const { return m_blockRows.value(); }
Index blockCols() const { return m_blockCols.value(); }
protected:
// friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
friend struct internal::unary_evaluator<Block<XprType,BlockRows,BlockCols,InnerPanel>, internal::IteratorBased, Scalar >;
Index nonZeros() const { return Dynamic; }
typename internal::ref_selector<XprType>::non_const_type m_matrix;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
protected:
// Disable assignment with clear error message.
// Note that simply removing operator= yields compilation errors with ICC+MSVC
template<typename T>
BlockImpl& operator=(const T&)
{
EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
return *this;
}
};
namespace internal {
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased >
: public evaluator_base<Block<ArgType,BlockRows,BlockCols,InnerPanel> >
{
class InnerVectorInnerIterator;
class OuterVectorInnerIterator;
public:
typedef Block<ArgType,BlockRows,BlockCols,InnerPanel> XprType;
typedef typename XprType::StorageIndex StorageIndex;
typedef typename XprType::Scalar Scalar;
enum {
IsRowMajor = XprType::IsRowMajor,
OuterVector = (BlockCols==1 && ArgType::IsRowMajor)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(BlockRows==1 && !ArgType::IsRowMajor),
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = XprType::Flags
};
typedef typename internal::conditional<OuterVector,OuterVectorInnerIterator,InnerVectorInnerIterator>::type InnerIterator;
explicit unary_evaluator(const XprType& op)
: m_argImpl(op.nestedExpression()), m_block(op)
{}
inline Index nonZerosEstimate() const {
const Index nnz = m_block.nonZeros();
if(nnz < 0) {
// Scale the non-zero estimate for the underlying expression linearly with block size.
// Return zero if the underlying block is empty.
const Index nested_sz = m_block.nestedExpression().size();
return nested_sz == 0 ? 0 : m_argImpl.nonZerosEstimate() * m_block.size() / nested_sz;
}
return nnz;
}
protected:
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
evaluator<ArgType> m_argImpl;
const XprType &m_block;
};
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::InnerVectorInnerIterator
: public EvalIterator
{
// NOTE MSVC fails to compile if we don't explicitely "import" IsRowMajor from unary_evaluator
// because the base class EvalIterator has a private IsRowMajor enum too. (bug #1786)
// NOTE We cannot call it IsRowMajor because it would shadow unary_evaluator::IsRowMajor
enum { XprIsRowMajor = unary_evaluator::IsRowMajor };
const XprType& m_block;
Index m_end;
public:
EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer)
: EvalIterator(aEval.m_argImpl, outer + (XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())),
m_block(aEval.m_block),
m_end(XprIsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows())
{
while( (EvalIterator::operator bool()) && (EvalIterator::index() < (XprIsRowMajor ? m_block.startCol() : m_block.startRow())) )
EvalIterator::operator++();
}
inline StorageIndex index() const { return EvalIterator::index() - convert_index<StorageIndex>(XprIsRowMajor ? m_block.startCol() : m_block.startRow()); }
inline Index outer() const { return EvalIterator::outer() - (XprIsRowMajor ? m_block.startRow() : m_block.startCol()); }
inline Index row() const { return EvalIterator::row() - m_block.startRow(); }
inline Index col() const { return EvalIterator::col() - m_block.startCol(); }
inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; }
};
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::OuterVectorInnerIterator
{
// NOTE see above
enum { XprIsRowMajor = unary_evaluator::IsRowMajor };
const unary_evaluator& m_eval;
Index m_outerPos;
const Index m_innerIndex;
Index m_end;
EvalIterator m_it;
public:
EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer)
: m_eval(aEval),
m_outerPos( (XprIsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ),
m_innerIndex(XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()),
m_end(XprIsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()),
m_it(m_eval.m_argImpl, m_outerPos)
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
while(m_it && m_it.index() < m_innerIndex) ++m_it;
if((!m_it) || (m_it.index()!=m_innerIndex))
++(*this);
}
inline StorageIndex index() const { return convert_index<StorageIndex>(m_outerPos - (XprIsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); }
inline Index outer() const { return 0; }
inline Index row() const { return XprIsRowMajor ? 0 : index(); }
inline Index col() const { return XprIsRowMajor ? index() : 0; }
inline Scalar value() const { return m_it.value(); }
inline Scalar& valueRef() { return m_it.valueRef(); }
inline OuterVectorInnerIterator& operator++()
{
// search next non-zero entry
while(++m_outerPos<m_end)
{
// Restart iterator at the next inner-vector:
m_it.~EvalIterator();
::new (&m_it) EvalIterator(m_eval.m_argImpl, m_outerPos);
// search for the key m_innerIndex in the current outer-vector
while(m_it && m_it.index() < m_innerIndex) ++m_it;
if(m_it && m_it.index()==m_innerIndex) break;
}
return *this;
}
inline operator bool() const { return m_outerPos < m_end; }
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
struct unary_evaluator<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
{
typedef Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
struct unary_evaluator<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
{
typedef Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_BLOCK_H
Event Timeline
Log In to Comment