Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102633118
SparseView.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Feb 22, 17:43
Size
7 KB
Mime Type
text/x-c++
Expires
Mon, Feb 24, 17:43 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24377814
Attached To
rDLMA Diffusion limited mixed aggregation
SparseView.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEVIEW_H
#define EIGEN_SPARSEVIEW_H
namespace Eigen {
namespace internal {
template<typename MatrixType>
struct traits<SparseView<MatrixType> > : traits<MatrixType>
{
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Sparse StorageKind;
enum {
Flags = int(traits<MatrixType>::Flags) & (RowMajorBit)
};
};
} // end namespace internal
/** \ingroup SparseCore_Module
* \class SparseView
*
* \brief Expression of a dense or sparse matrix with zero or too small values removed
*
* \tparam MatrixType the type of the object of which we are removing the small entries
*
* This class represents an expression of a given dense or sparse matrix with
* entries smaller than \c reference * \c epsilon are removed.
* It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::sparseView(), SparseMatrixBase::pruned()
*/
template<typename MatrixType>
class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
{
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
typedef SparseMatrixBase<SparseView > Base;
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0),
const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision())
: m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index innerSize() const { return m_matrix.innerSize(); }
inline Index outerSize() const { return m_matrix.outerSize(); }
/** \returns the nested expression */
const typename internal::remove_all<MatrixTypeNested>::type&
nestedExpression() const { return m_matrix; }
Scalar reference() const { return m_reference; }
RealScalar epsilon() const { return m_epsilon; }
protected:
MatrixTypeNested m_matrix;
Scalar m_reference;
RealScalar m_epsilon;
};
namespace internal {
// TODO find a way to unify the two following variants
// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is
// not easy because the evaluators do not expose the sizes of the underlying expression.
template<typename ArgType>
struct unary_evaluator<SparseView<ArgType>, IteratorBased>
: public evaluator_base<SparseView<ArgType> >
{
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
public:
typedef SparseView<ArgType> XprType;
class InnerIterator : public EvalIterator
{
protected:
typedef typename XprType::Scalar Scalar;
public:
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
: EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view)
{
incrementToNonZero();
}
EIGEN_STRONG_INLINE InnerIterator& operator++()
{
EvalIterator::operator++();
incrementToNonZero();
return *this;
}
using EvalIterator::value;
protected:
const XprType &m_view;
private:
void incrementToNonZero()
{
while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon()))
{
EvalIterator::operator++();
}
}
};
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = XprType::Flags
};
explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
protected:
evaluator<ArgType> m_argImpl;
const XprType &m_view;
};
template<typename ArgType>
struct unary_evaluator<SparseView<ArgType>, IndexBased>
: public evaluator_base<SparseView<ArgType> >
{
public:
typedef SparseView<ArgType> XprType;
protected:
enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
typedef typename XprType::Scalar Scalar;
typedef typename XprType::StorageIndex StorageIndex;
public:
class InnerIterator
{
public:
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
: m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize())
{
incrementToNonZero();
}
EIGEN_STRONG_INLINE InnerIterator& operator++()
{
m_inner++;
incrementToNonZero();
return *this;
}
EIGEN_STRONG_INLINE Scalar value() const
{
return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner)
: m_sve.m_argImpl.coeff(m_inner, m_outer);
}
EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
protected:
const unary_evaluator &m_sve;
Index m_inner;
const Index m_outer;
const Index m_end;
private:
void incrementToNonZero()
{
while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon()))
{
m_inner++;
}
}
};
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = XprType::Flags
};
explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
protected:
evaluator<ArgType> m_argImpl;
const XprType &m_view;
};
} // end namespace internal
/** \ingroup SparseCore_Module
*
* \returns a sparse expression of the dense expression \c *this with values smaller than
* \a reference * \a epsilon removed.
*
* This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S:
* \code
* MatrixXd D(n,m);
* SparseMatrix<double> S;
* S = D.sparseView(); // suppress numerical zeros (exact)
* S = D.sparseView(reference);
* S = D.sparseView(reference,epsilon);
* \endcode
* where \a reference is a meaningful non zero reference value,
* and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision().
*
* \sa SparseMatrixBase::pruned(), class SparseView */
template<typename Derived>
const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference,
const typename NumTraits<Scalar>::Real& epsilon) const
{
return SparseView<Derived>(derived(), reference, epsilon);
}
/** \returns an expression of \c *this with values smaller than
* \a reference * \a epsilon removed.
*
* This method is typically used in conjunction with the product of two sparse matrices
* to automatically prune the smallest values as follows:
* \code
* C = (A*B).pruned(); // suppress numerical zeros (exact)
* C = (A*B).pruned(ref);
* C = (A*B).pruned(ref,epsilon);
* \endcode
* where \c ref is a meaningful non zero reference value.
* */
template<typename Derived>
const SparseView<Derived>
SparseMatrixBase<Derived>::pruned(const Scalar& reference,
const RealScalar& epsilon) const
{
return SparseView<Derived>(derived(), reference, epsilon);
}
} // end namespace Eigen
#endif
Event Timeline
Log In to Comment