Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121835398
sparse_cholesky.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Jul 14, 07:10
Size
6 KB
Mime Type
text/x-c
Expires
Wed, Jul 16, 07:10 (2 d)
Engine
blob
Format
Raw Data
Handle
27399061
Attached To
rDLMA Diffusion limited mixed aggregation
sparse_cholesky.cpp
View Options
// #define EIGEN_TAUCS_SUPPORT
// #define EIGEN_CHOLMOD_SUPPORT
#include <iostream>
#include <Eigen/Sparse>
// g++ -DSIZE=10000 -DDENSITY=0.001 sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
#define NOGMM
#define NOMTL
#ifndef SIZE
#define SIZE 10
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \
for (int _j=0; _j<NBTRIES; ++_j) { \
timer.start(); \
for (int _k=0; _k<REPEAT; ++_k) { \
X \
} timer.stop(); }
// typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
typedef
SparseMatrix
<
Scalar
,
SelfAdjoint
|
LowerTriangular
>
EigenSparseSelfAdjointMatrix
;
void
fillSpdMatrix
(
float
density
,
int
rows
,
int
cols
,
EigenSparseSelfAdjointMatrix
&
dst
)
{
dst
.
startFill
(
rows
*
cols
*
density
);
for
(
int
j
=
0
;
j
<
cols
;
j
++
)
{
dst
.
fill
(
j
,
j
)
=
internal
::
random
<
Scalar
>
(
10
,
20
);
for
(
int
i
=
j
+
1
;
i
<
rows
;
i
++
)
{
Scalar
v
=
(
internal
::
random
<
float
>
(
0
,
1
)
<
density
)
?
internal
::
random
<
Scalar
>
()
:
0
;
if
(
v
!=
0
)
dst
.
fill
(
i
,
j
)
=
v
;
}
}
dst
.
endFill
();
}
#include <Eigen/Cholesky>
template
<
int
Backend
>
void
doEigen
(
const
char
*
name
,
const
EigenSparseSelfAdjointMatrix
&
sm1
,
int
flags
=
0
)
{
std
::
cout
<<
name
<<
"..."
<<
std
::
flush
;
BenchTimer
timer
;
timer
.
start
();
SparseLLT
<
EigenSparseSelfAdjointMatrix
,
Backend
>
chol
(
sm1
,
flags
);
timer
.
stop
();
std
::
cout
<<
":
\t
"
<<
timer
.
value
()
<<
endl
;
std
::
cout
<<
" nnz: "
<<
sm1
.
nonZeros
()
<<
" => "
<<
chol
.
matrixL
().
nonZeros
()
<<
"
\n
"
;
// std::cout << "sparse\n" << chol.matrixL() << "%\n";
}
int
main
(
int
argc
,
char
*
argv
[])
{
int
rows
=
SIZE
;
int
cols
=
SIZE
;
float
density
=
DENSITY
;
BenchTimer
timer
;
VectorXf
b
=
VectorXf
::
Random
(
cols
);
VectorXf
x
=
VectorXf
::
Random
(
cols
);
bool
densedone
=
false
;
//for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
// float density = 0.5;
{
EigenSparseSelfAdjointMatrix
sm1
(
rows
,
cols
);
std
::
cout
<<
"Generate sparse matrix (might take a while)...
\n
"
;
fillSpdMatrix
(
density
,
rows
,
cols
,
sm1
);
std
::
cout
<<
"DONE
\n\n
"
;
// dense matrices
#ifdef DENSEMATRIX
if
(
!
densedone
)
{
densedone
=
true
;
std
::
cout
<<
"Eigen Dense
\t
"
<<
density
*
100
<<
"%
\n
"
;
DenseMatrix
m1
(
rows
,
cols
);
eiToDense
(
sm1
,
m1
);
m1
=
(
m1
+
m1
.
transpose
()).
eval
();
m1
.
diagonal
()
*=
0.5
;
// BENCH(LLT<DenseMatrix> chol(m1);)
// std::cout << "dense:\t" << timer.value() << endl;
BenchTimer
timer
;
timer
.
start
();
LLT
<
DenseMatrix
>
chol
(
m1
);
timer
.
stop
();
std
::
cout
<<
"dense:
\t
"
<<
timer
.
value
()
<<
endl
;
int
count
=
0
;
for
(
int
j
=
0
;
j
<
cols
;
++
j
)
for
(
int
i
=
j
;
i
<
rows
;
++
i
)
if
(
!
internal
::
isMuchSmallerThan
(
internal
::
abs
(
chol
.
matrixL
()(
i
,
j
)),
0.1
))
count
++
;
std
::
cout
<<
"dense: "
<<
"nnz = "
<<
count
<<
"
\n
"
;
// std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
}
#endif
// eigen sparse matrices
doEigen
<
Eigen
::
DefaultBackend
>
(
"Eigen/Sparse"
,
sm1
,
Eigen
::
IncompleteFactorization
);
#ifdef EIGEN_CHOLMOD_SUPPORT
doEigen
<
Eigen
::
Cholmod
>
(
"Eigen/Cholmod"
,
sm1
,
Eigen
::
IncompleteFactorization
);
#endif
#ifdef EIGEN_TAUCS_SUPPORT
doEigen
<
Eigen
::
Taucs
>
(
"Eigen/Taucs"
,
sm1
,
Eigen
::
IncompleteFactorization
);
#endif
#if 0
// TAUCS
{
taucs_ccs_matrix A = sm1.asTaucsMatrix();
//BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
// BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
// std::cout << "taucs:\t" << timer.value() << endl;
taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
for (int j=0; j<cols; ++j)
{
for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
std::cout << chol->values.d[i] << " ";
}
}
// CHOLMOD
#ifdef EIGEN_CHOLMOD_SUPPORT
{
cholmod_common c;
cholmod_start (&c);
cholmod_sparse A;
cholmod_factor *L;
A = sm1.asCholmodMatrix();
BenchTimer timer;
// timer.reset();
timer.start();
std::vector<int> perm(cols);
// std::vector<int> set(ncols);
for (int i=0; i<cols; ++i)
perm[i] = i;
// c.nmethods = 1;
// c.method[0] = 1;
c.nmethods = 1;
c.method [0].ordering = CHOLMOD_NATURAL;
c.postorder = 0;
c.final_ll = 1;
L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
timer.stop();
std::cout << "cholmod/analyze:\t" << timer.value() << endl;
timer.reset();
timer.start();
cholmod_factorize(&A, L, &c);
timer.stop();
std::cout << "cholmod/factorize:\t" << timer.value() << endl;
cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
cholmod_print_factor(L, "Factors", &c);
cholmod_print_sparse(cholmat, "Chol", &c);
cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
//
// cholmod_print_sparse(&A, "A", &c);
// cholmod_write_sparse(stdout, &A, 0, 0, &c);
// for (int j=0; j<cols; ++j)
// {
// for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
// std::cout << chol->values.s[i] << " ";
// }
}
#endif
#endif
}
return
0
;
}
Event Timeline
Log In to Comment