Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102458012
sparse_lu.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 22:54
Size
2 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 22:54 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24324306
Attached To
rDLMA Diffusion limited mixed aggregation
sparse_lu.cpp
View Options
// g++ -I.. sparse_lu.cpp -O3 -g0 -I /usr/include/superlu/ -lsuperlu -lgfortran -DSIZE=1000 -DDENSITY=.05 && ./a.out
#define EIGEN_SUPERLU_SUPPORT
#define EIGEN_UMFPACK_SUPPORT
#include <Eigen/Sparse>
#define NOGMM
#define NOMTL
#ifndef SIZE
#define SIZE 10
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \
for (int _j=0; _j<NBTRIES; ++_j) { \
timer.start(); \
for (int _k=0; _k<REPEAT; ++_k) { \
X \
} timer.stop(); }
typedef Matrix<Scalar,Dynamic,1> VectorX;
#include <Eigen/LU>
template<int Backend>
void doEigen(const char* name, const EigenSparseMatrix& sm1, const VectorX& b, VectorX& x, int flags = 0)
{
std::cout << name << "..." << std::flush;
BenchTimer timer; timer.start();
SparseLU<EigenSparseMatrix,Backend> lu(sm1, flags);
timer.stop();
if (lu.succeeded())
std::cout << ":\t" << timer.value() << endl;
else
{
std::cout << ":\t FAILED" << endl;
return;
}
bool ok;
timer.reset(); timer.start();
ok = lu.solve(b,&x);
timer.stop();
if (ok)
std::cout << " solve:\t" << timer.value() << endl;
else
std::cout << " solve:\t" << " FAILED" << endl;
//std::cout << x.transpose() << "\n";
}
int main(int argc, char *argv[])
{
int rows = SIZE;
int cols = SIZE;
float density = DENSITY;
BenchTimer timer;
VectorX b = VectorX::Random(cols);
VectorX x = VectorX::Random(cols);
bool densedone = false;
//for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
// float density = 0.5;
{
EigenSparseMatrix sm1(rows, cols);
fillMatrix(density, rows, cols, sm1);
// dense matrices
#ifdef DENSEMATRIX
if (!densedone)
{
densedone = true;
std::cout << "Eigen Dense\t" << density*100 << "%\n";
DenseMatrix m1(rows,cols);
eiToDense(sm1, m1);
BenchTimer timer;
timer.start();
FullPivLU<DenseMatrix> lu(m1);
timer.stop();
std::cout << "Eigen/dense:\t" << timer.value() << endl;
timer.reset();
timer.start();
lu.solve(b,&x);
timer.stop();
std::cout << " solve:\t" << timer.value() << endl;
// std::cout << b.transpose() << "\n";
// std::cout << x.transpose() << "\n";
}
#endif
#ifdef EIGEN_UMFPACK_SUPPORT
x.setZero();
doEigen<Eigen::UmfPack>("Eigen/UmfPack (auto)", sm1, b, x, 0);
#endif
#ifdef EIGEN_SUPERLU_SUPPORT
x.setZero();
doEigen<Eigen::SuperLU>("Eigen/SuperLU (nat)", sm1, b, x, Eigen::NaturalOrdering);
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD AT+A)", sm1, b, x, Eigen::MinimumDegree_AT_PLUS_A);
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD ATA)", sm1, b, x, Eigen::MinimumDegree_ATA);
doEigen<Eigen::SuperLU>("Eigen/SuperLU (COLAMD)", sm1, b, x, Eigen::ColApproxMinimumDegree);
#endif
}
return 0;
}
Event Timeline
Log In to Comment