Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F101906391
ssbmv.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Feb 15, 00:02
Size
9 KB
Mime Type
text/x-c
Expires
Mon, Feb 17, 00:02 (2 d)
Engine
blob
Format
Raw Data
Handle
24242031
Attached To
rDLMA Diffusion limited mixed aggregation
ssbmv.c
View Options
/* ssbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */
int
ssbmv_
(
char
*
uplo
,
integer
*
n
,
integer
*
k
,
real
*
alpha
,
real
*
a
,
integer
*
lda
,
real
*
x
,
integer
*
incx
,
real
*
beta
,
real
*
y
,
integer
*
incy
,
ftnlen
uplo_len
)
{
/* System generated locals */
integer
a_dim1
,
a_offset
,
i__1
,
i__2
,
i__3
,
i__4
;
/* Local variables */
integer
i__
,
j
,
l
,
ix
,
iy
,
jx
,
jy
,
kx
,
ky
,
info
;
real
temp1
,
temp2
;
extern
logical
lsame_
(
char
*
,
char
*
,
ftnlen
,
ftnlen
);
integer
kplus1
;
extern
/* Subroutine */
int
xerbla_
(
char
*
,
integer
*
,
ftnlen
);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSBMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n symmetric band matrix, with k super-diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the band matrix A is being supplied as */
/* follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* being supplied. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* being supplied. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of super-diagonals of the */
/* matrix A. K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* ALPHA - REAL . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - REAL array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the symmetric matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer the upper */
/* triangular part of a symmetric band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the symmetric matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer the lower */
/* triangular part of a symmetric band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - REAL array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the */
/* vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - REAL . */
/* On entry, BETA specifies the scalar beta. */
/* Unchanged on exit. */
/* Y - REAL array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the */
/* vector y. On exit, Y is overwritten by the updated vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1
=
*
lda
;
a_offset
=
1
+
a_dim1
;
a
-=
a_offset
;
--
x
;
--
y
;
/* Function Body */
info
=
0
;
if
(
!
lsame_
(
uplo
,
"U"
,
(
ftnlen
)
1
,
(
ftnlen
)
1
)
&&
!
lsame_
(
uplo
,
"L"
,
(
ftnlen
)
1
,
(
ftnlen
)
1
))
{
info
=
1
;
}
else
if
(
*
n
<
0
)
{
info
=
2
;
}
else
if
(
*
k
<
0
)
{
info
=
3
;
}
else
if
(
*
lda
<
*
k
+
1
)
{
info
=
6
;
}
else
if
(
*
incx
==
0
)
{
info
=
8
;
}
else
if
(
*
incy
==
0
)
{
info
=
11
;
}
if
(
info
!=
0
)
{
xerbla_
(
"SSBMV "
,
&
info
,
(
ftnlen
)
6
);
return
0
;
}
/* Quick return if possible. */
if
(
*
n
==
0
||
(
*
alpha
==
0.f
&&
*
beta
==
1.f
))
{
return
0
;
}
/* Set up the start points in X and Y. */
if
(
*
incx
>
0
)
{
kx
=
1
;
}
else
{
kx
=
1
-
(
*
n
-
1
)
*
*
incx
;
}
if
(
*
incy
>
0
)
{
ky
=
1
;
}
else
{
ky
=
1
-
(
*
n
-
1
)
*
*
incy
;
}
/* Start the operations. In this version the elements of the array A */
/* are accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if
(
*
beta
!=
1.f
)
{
if
(
*
incy
==
1
)
{
if
(
*
beta
==
0.f
)
{
i__1
=
*
n
;
for
(
i__
=
1
;
i__
<=
i__1
;
++
i__
)
{
y
[
i__
]
=
0.f
;
/* L10: */
}
}
else
{
i__1
=
*
n
;
for
(
i__
=
1
;
i__
<=
i__1
;
++
i__
)
{
y
[
i__
]
=
*
beta
*
y
[
i__
];
/* L20: */
}
}
}
else
{
iy
=
ky
;
if
(
*
beta
==
0.f
)
{
i__1
=
*
n
;
for
(
i__
=
1
;
i__
<=
i__1
;
++
i__
)
{
y
[
iy
]
=
0.f
;
iy
+=
*
incy
;
/* L30: */
}
}
else
{
i__1
=
*
n
;
for
(
i__
=
1
;
i__
<=
i__1
;
++
i__
)
{
y
[
iy
]
=
*
beta
*
y
[
iy
];
iy
+=
*
incy
;
/* L40: */
}
}
}
}
if
(
*
alpha
==
0.f
)
{
return
0
;
}
if
(
lsame_
(
uplo
,
"U"
,
(
ftnlen
)
1
,
(
ftnlen
)
1
))
{
/* Form y when upper triangle of A is stored. */
kplus1
=
*
k
+
1
;
if
(
*
incx
==
1
&&
*
incy
==
1
)
{
i__1
=
*
n
;
for
(
j
=
1
;
j
<=
i__1
;
++
j
)
{
temp1
=
*
alpha
*
x
[
j
];
temp2
=
0.f
;
l
=
kplus1
-
j
;
/* Computing MAX */
i__2
=
1
,
i__3
=
j
-
*
k
;
i__4
=
j
-
1
;
for
(
i__
=
max
(
i__2
,
i__3
);
i__
<=
i__4
;
++
i__
)
{
y
[
i__
]
+=
temp1
*
a
[
l
+
i__
+
j
*
a_dim1
];
temp2
+=
a
[
l
+
i__
+
j
*
a_dim1
]
*
x
[
i__
];
/* L50: */
}
y
[
j
]
=
y
[
j
]
+
temp1
*
a
[
kplus1
+
j
*
a_dim1
]
+
*
alpha
*
temp2
;
/* L60: */
}
}
else
{
jx
=
kx
;
jy
=
ky
;
i__1
=
*
n
;
for
(
j
=
1
;
j
<=
i__1
;
++
j
)
{
temp1
=
*
alpha
*
x
[
jx
];
temp2
=
0.f
;
ix
=
kx
;
iy
=
ky
;
l
=
kplus1
-
j
;
/* Computing MAX */
i__4
=
1
,
i__2
=
j
-
*
k
;
i__3
=
j
-
1
;
for
(
i__
=
max
(
i__4
,
i__2
);
i__
<=
i__3
;
++
i__
)
{
y
[
iy
]
+=
temp1
*
a
[
l
+
i__
+
j
*
a_dim1
];
temp2
+=
a
[
l
+
i__
+
j
*
a_dim1
]
*
x
[
ix
];
ix
+=
*
incx
;
iy
+=
*
incy
;
/* L70: */
}
y
[
jy
]
=
y
[
jy
]
+
temp1
*
a
[
kplus1
+
j
*
a_dim1
]
+
*
alpha
*
temp2
;
jx
+=
*
incx
;
jy
+=
*
incy
;
if
(
j
>
*
k
)
{
kx
+=
*
incx
;
ky
+=
*
incy
;
}
/* L80: */
}
}
}
else
{
/* Form y when lower triangle of A is stored. */
if
(
*
incx
==
1
&&
*
incy
==
1
)
{
i__1
=
*
n
;
for
(
j
=
1
;
j
<=
i__1
;
++
j
)
{
temp1
=
*
alpha
*
x
[
j
];
temp2
=
0.f
;
y
[
j
]
+=
temp1
*
a
[
j
*
a_dim1
+
1
];
l
=
1
-
j
;
/* Computing MIN */
i__4
=
*
n
,
i__2
=
j
+
*
k
;
i__3
=
min
(
i__4
,
i__2
);
for
(
i__
=
j
+
1
;
i__
<=
i__3
;
++
i__
)
{
y
[
i__
]
+=
temp1
*
a
[
l
+
i__
+
j
*
a_dim1
];
temp2
+=
a
[
l
+
i__
+
j
*
a_dim1
]
*
x
[
i__
];
/* L90: */
}
y
[
j
]
+=
*
alpha
*
temp2
;
/* L100: */
}
}
else
{
jx
=
kx
;
jy
=
ky
;
i__1
=
*
n
;
for
(
j
=
1
;
j
<=
i__1
;
++
j
)
{
temp1
=
*
alpha
*
x
[
jx
];
temp2
=
0.f
;
y
[
jy
]
+=
temp1
*
a
[
j
*
a_dim1
+
1
];
l
=
1
-
j
;
ix
=
jx
;
iy
=
jy
;
/* Computing MIN */
i__4
=
*
n
,
i__2
=
j
+
*
k
;
i__3
=
min
(
i__4
,
i__2
);
for
(
i__
=
j
+
1
;
i__
<=
i__3
;
++
i__
)
{
ix
+=
*
incx
;
iy
+=
*
incy
;
y
[
iy
]
+=
temp1
*
a
[
l
+
i__
+
j
*
a_dim1
];
temp2
+=
a
[
l
+
i__
+
j
*
a_dim1
]
*
x
[
ix
];
/* L110: */
}
y
[
jy
]
+=
*
alpha
*
temp2
;
jx
+=
*
incx
;
jy
+=
*
incy
;
/* L120: */
}
}
}
return
0
;
/* End of SSBMV . */
}
/* ssbmv_ */
Event Timeline
Log In to Comment