Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102455494
adjoint.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 22:17
Size
8 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 22:17 (2 d)
Engine
blob
Format
Raw Data
Handle
24324225
Attached To
rDLMA Diffusion limited mixed aggregation
adjoint.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template
<
bool
IsInteger
>
struct
adjoint_specific
;
template
<>
struct
adjoint_specific
<
true
>
{
template
<
typename
Vec
,
typename
Mat
,
typename
Scalar
>
static
void
run
(
const
Vec
&
v1
,
const
Vec
&
v2
,
Vec
&
v3
,
const
Mat
&
square
,
Scalar
s1
,
Scalar
s2
)
{
VERIFY
(
test_isApproxWithRef
((
s1
*
v1
+
s2
*
v2
).
dot
(
v3
),
numext
::
conj
(
s1
)
*
v1
.
dot
(
v3
)
+
numext
::
conj
(
s2
)
*
v2
.
dot
(
v3
),
0
));
VERIFY
(
test_isApproxWithRef
(
v3
.
dot
(
s1
*
v1
+
s2
*
v2
),
s1
*
v3
.
dot
(
v1
)
+
s2
*
v3
.
dot
(
v2
),
0
));
// check compatibility of dot and adjoint
VERIFY
(
test_isApproxWithRef
(
v1
.
dot
(
square
*
v2
),
(
square
.
adjoint
()
*
v1
).
dot
(
v2
),
0
));
}
};
template
<>
struct
adjoint_specific
<
false
>
{
template
<
typename
Vec
,
typename
Mat
,
typename
Scalar
>
static
void
run
(
const
Vec
&
v1
,
const
Vec
&
v2
,
Vec
&
v3
,
const
Mat
&
square
,
Scalar
s1
,
Scalar
s2
)
{
typedef
typename
NumTraits
<
Scalar
>::
Real
RealScalar
;
using
std
::
abs
;
RealScalar
ref
=
NumTraits
<
Scalar
>::
IsInteger
?
RealScalar
(
0
)
:
(
std
::
max
)((
s1
*
v1
+
s2
*
v2
).
norm
(),
v3
.
norm
());
VERIFY
(
test_isApproxWithRef
((
s1
*
v1
+
s2
*
v2
).
dot
(
v3
),
numext
::
conj
(
s1
)
*
v1
.
dot
(
v3
)
+
numext
::
conj
(
s2
)
*
v2
.
dot
(
v3
),
ref
));
VERIFY
(
test_isApproxWithRef
(
v3
.
dot
(
s1
*
v1
+
s2
*
v2
),
s1
*
v3
.
dot
(
v1
)
+
s2
*
v3
.
dot
(
v2
),
ref
));
VERIFY_IS_APPROX
(
v1
.
squaredNorm
(),
v1
.
norm
()
*
v1
.
norm
());
// check normalized() and normalize()
VERIFY_IS_APPROX
(
v1
,
v1
.
norm
()
*
v1
.
normalized
());
v3
=
v1
;
v3
.
normalize
();
VERIFY_IS_APPROX
(
v1
,
v1
.
norm
()
*
v3
);
VERIFY_IS_APPROX
(
v3
,
v1
.
normalized
());
VERIFY_IS_APPROX
(
v3
.
norm
(),
RealScalar
(
1
));
// check null inputs
VERIFY_IS_APPROX
((
v1
*
0
).
normalized
(),
(
v1
*
0
));
#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
RealScalar
very_small
=
(
std
::
numeric_limits
<
RealScalar
>::
min
)();
VERIFY
(
(
v1
*
very_small
).
norm
()
==
0
);
VERIFY_IS_APPROX
((
v1
*
very_small
).
normalized
(),
(
v1
*
very_small
));
v3
=
v1
*
very_small
;
v3
.
normalize
();
VERIFY_IS_APPROX
(
v3
,
(
v1
*
very_small
));
#endif
// check compatibility of dot and adjoint
ref
=
NumTraits
<
Scalar
>::
IsInteger
?
0
:
(
std
::
max
)((
std
::
max
)(
v1
.
norm
(),
v2
.
norm
()),(
std
::
max
)((
square
*
v2
).
norm
(),(
square
.
adjoint
()
*
v1
).
norm
()));
VERIFY
(
internal
::
isMuchSmallerThan
(
abs
(
v1
.
dot
(
square
*
v2
)
-
(
square
.
adjoint
()
*
v1
).
dot
(
v2
)),
ref
,
test_precision
<
Scalar
>
()));
// check that Random().normalized() works: tricky as the random xpr must be evaluated by
// normalized() in order to produce a consistent result.
VERIFY_IS_APPROX
(
Vec
::
Random
(
v1
.
size
()).
normalized
().
norm
(),
RealScalar
(
1
));
}
};
template
<
typename
MatrixType
>
void
adjoint
(
const
MatrixType
&
m
)
{
/* this test covers the following files:
Transpose.h Conjugate.h Dot.h
*/
using
std
::
abs
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
NumTraits
<
Scalar
>::
Real
RealScalar
;
typedef
Matrix
<
Scalar
,
MatrixType
::
RowsAtCompileTime
,
1
>
VectorType
;
typedef
Matrix
<
Scalar
,
MatrixType
::
RowsAtCompileTime
,
MatrixType
::
RowsAtCompileTime
>
SquareMatrixType
;
const
Index
PacketSize
=
internal
::
packet_traits
<
Scalar
>::
size
;
Index
rows
=
m
.
rows
();
Index
cols
=
m
.
cols
();
MatrixType
m1
=
MatrixType
::
Random
(
rows
,
cols
),
m2
=
MatrixType
::
Random
(
rows
,
cols
),
m3
(
rows
,
cols
),
square
=
SquareMatrixType
::
Random
(
rows
,
rows
);
VectorType
v1
=
VectorType
::
Random
(
rows
),
v2
=
VectorType
::
Random
(
rows
),
v3
=
VectorType
::
Random
(
rows
),
vzero
=
VectorType
::
Zero
(
rows
);
Scalar
s1
=
internal
::
random
<
Scalar
>
(),
s2
=
internal
::
random
<
Scalar
>
();
// check basic compatibility of adjoint, transpose, conjugate
VERIFY_IS_APPROX
(
m1
.
transpose
().
conjugate
().
adjoint
(),
m1
);
VERIFY_IS_APPROX
(
m1
.
adjoint
().
conjugate
().
transpose
(),
m1
);
// check multiplicative behavior
VERIFY_IS_APPROX
((
m1
.
adjoint
()
*
m2
).
adjoint
(),
m2
.
adjoint
()
*
m1
);
VERIFY_IS_APPROX
((
s1
*
m1
).
adjoint
(),
numext
::
conj
(
s1
)
*
m1
.
adjoint
());
// check basic properties of dot, squaredNorm
VERIFY_IS_APPROX
(
numext
::
conj
(
v1
.
dot
(
v2
)),
v2
.
dot
(
v1
));
VERIFY_IS_APPROX
(
numext
::
real
(
v1
.
dot
(
v1
)),
v1
.
squaredNorm
());
adjoint_specific
<
NumTraits
<
Scalar
>::
IsInteger
>::
run
(
v1
,
v2
,
v3
,
square
,
s1
,
s2
);
VERIFY_IS_MUCH_SMALLER_THAN
(
abs
(
vzero
.
dot
(
v1
)),
static_cast
<
RealScalar
>
(
1
));
// like in testBasicStuff, test operator() to check const-qualification
Index
r
=
internal
::
random
<
Index
>
(
0
,
rows
-
1
),
c
=
internal
::
random
<
Index
>
(
0
,
cols
-
1
);
VERIFY_IS_APPROX
(
m1
.
conjugate
()(
r
,
c
),
numext
::
conj
(
m1
(
r
,
c
)));
VERIFY_IS_APPROX
(
m1
.
adjoint
()(
c
,
r
),
numext
::
conj
(
m1
(
r
,
c
)));
// check inplace transpose
m3
=
m1
;
m3
.
transposeInPlace
();
VERIFY_IS_APPROX
(
m3
,
m1
.
transpose
());
m3
.
transposeInPlace
();
VERIFY_IS_APPROX
(
m3
,
m1
);
if
(
PacketSize
<
m3
.
rows
()
&&
PacketSize
<
m3
.
cols
())
{
m3
=
m1
;
Index
i
=
internal
::
random
<
Index
>
(
0
,
m3
.
rows
()
-
PacketSize
);
Index
j
=
internal
::
random
<
Index
>
(
0
,
m3
.
cols
()
-
PacketSize
);
m3
.
template
block
<
PacketSize
,
PacketSize
>
(
i
,
j
).
transposeInPlace
();
VERIFY_IS_APPROX
(
(
m3
.
template
block
<
PacketSize
,
PacketSize
>
(
i
,
j
)),
(
m1
.
template
block
<
PacketSize
,
PacketSize
>
(
i
,
j
).
transpose
())
);
m3
.
template
block
<
PacketSize
,
PacketSize
>
(
i
,
j
).
transposeInPlace
();
VERIFY_IS_APPROX
(
m3
,
m1
);
}
// check inplace adjoint
m3
=
m1
;
m3
.
adjointInPlace
();
VERIFY_IS_APPROX
(
m3
,
m1
.
adjoint
());
m3
.
transposeInPlace
();
VERIFY_IS_APPROX
(
m3
,
m1
.
conjugate
());
// check mixed dot product
typedef
Matrix
<
RealScalar
,
MatrixType
::
RowsAtCompileTime
,
1
>
RealVectorType
;
RealVectorType
rv1
=
RealVectorType
::
Random
(
rows
);
VERIFY_IS_APPROX
(
v1
.
dot
(
rv1
.
template
cast
<
Scalar
>
()),
v1
.
dot
(
rv1
));
VERIFY_IS_APPROX
(
rv1
.
template
cast
<
Scalar
>
().
dot
(
v1
),
rv1
.
dot
(
v1
));
VERIFY
(
is_same_type
(
m1
,
m1
.
template
conjugateIf
<
false
>
())
);
VERIFY
(
is_same_type
(
m1
.
conjugate
(),
m1
.
template
conjugateIf
<
true
>
())
);
}
template
<
int
>
void
adjoint_extra
()
{
MatrixXcf
a
(
10
,
10
),
b
(
10
,
10
);
VERIFY_RAISES_ASSERT
(
a
=
a
.
transpose
());
VERIFY_RAISES_ASSERT
(
a
=
a
.
transpose
()
+
b
);
VERIFY_RAISES_ASSERT
(
a
=
b
+
a
.
transpose
());
VERIFY_RAISES_ASSERT
(
a
=
a
.
conjugate
().
transpose
());
VERIFY_RAISES_ASSERT
(
a
=
a
.
adjoint
());
VERIFY_RAISES_ASSERT
(
a
=
a
.
adjoint
()
+
b
);
VERIFY_RAISES_ASSERT
(
a
=
b
+
a
.
adjoint
());
// no assertion should be triggered for these cases:
a
.
transpose
()
=
a
.
transpose
();
a
.
transpose
()
+=
a
.
transpose
();
a
.
transpose
()
+=
a
.
transpose
()
+
b
;
a
.
transpose
()
=
a
.
adjoint
();
a
.
transpose
()
+=
a
.
adjoint
();
a
.
transpose
()
+=
a
.
adjoint
()
+
b
;
// regression tests for check_for_aliasing
MatrixXd
c
(
10
,
10
);
c
=
1.0
*
MatrixXd
::
Ones
(
10
,
10
)
+
c
;
c
=
MatrixXd
::
Ones
(
10
,
10
)
*
1.0
+
c
;
c
=
c
+
MatrixXd
::
Ones
(
10
,
10
)
.
cwiseProduct
(
MatrixXd
::
Zero
(
10
,
10
)
);
c
=
MatrixXd
::
Ones
(
10
,
10
)
*
MatrixXd
::
Zero
(
10
,
10
);
// regression for bug 1646
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
c
.
col
(
j
).
head
(
j
)
=
c
.
row
(
j
).
head
(
j
);
}
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
c
.
col
(
j
)
=
c
.
row
(
j
);
}
a
.
conservativeResize
(
1
,
1
);
a
=
a
.
transpose
();
a
.
conservativeResize
(
0
,
0
);
a
=
a
.
transpose
();
}
EIGEN_DECLARE_TEST
(
adjoint
)
{
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
CALL_SUBTEST_1
(
adjoint
(
Matrix
<
float
,
1
,
1
>
())
);
CALL_SUBTEST_2
(
adjoint
(
Matrix3d
())
);
CALL_SUBTEST_3
(
adjoint
(
Matrix4f
())
);
CALL_SUBTEST_4
(
adjoint
(
MatrixXcf
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
/
2
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
/
2
)))
);
CALL_SUBTEST_5
(
adjoint
(
MatrixXi
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
CALL_SUBTEST_6
(
adjoint
(
MatrixXf
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
// Complement for 128 bits vectorization:
CALL_SUBTEST_8
(
adjoint
(
Matrix2d
())
);
CALL_SUBTEST_9
(
adjoint
(
Matrix
<
int
,
4
,
4
>
())
);
// 256 bits vectorization:
CALL_SUBTEST_10
(
adjoint
(
Matrix
<
float
,
8
,
8
>
())
);
CALL_SUBTEST_11
(
adjoint
(
Matrix
<
double
,
4
,
4
>
())
);
CALL_SUBTEST_12
(
adjoint
(
Matrix
<
int
,
8
,
8
>
())
);
}
// test a large static matrix only once
CALL_SUBTEST_7
(
adjoint
(
Matrix
<
float
,
100
,
100
>
())
);
CALL_SUBTEST_13
(
adjoint_extra
<
0
>
()
);
}
Event Timeline
Log In to Comment