Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122202800
adjoint.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Jul 16, 14:26
Size
8 KB
Mime Type
text/x-c
Expires
Fri, Jul 18, 14:26 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27449271
Attached To
rDLMA Diffusion limited mixed aggregation
adjoint.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template<bool IsInteger> struct adjoint_specific;
template<> struct adjoint_specific<true> {
template<typename Vec, typename Mat, typename Scalar>
static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
// check compatibility of dot and adjoint
VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
}
};
template<> struct adjoint_specific<false> {
template<typename Vec, typename Mat, typename Scalar>
static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
typedef typename NumTraits<Scalar>::Real RealScalar;
using std::abs;
RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
// check normalized() and normalize()
VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
v3 = v1;
v3.normalize();
VERIFY_IS_APPROX(v1, v1.norm() * v3);
VERIFY_IS_APPROX(v3, v1.normalized());
VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
// check null inputs
VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
VERIFY( (v1*very_small).norm() == 0 );
VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
v3 = v1*very_small;
v3.normalize();
VERIFY_IS_APPROX(v3, (v1*very_small));
#endif
// check compatibility of dot and adjoint
ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
// check that Random().normalized() works: tricky as the random xpr must be evaluated by
// normalized() in order to produce a consistent result.
VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
}
};
template<typename MatrixType> void adjoint(const MatrixType& m)
{
/* this test covers the following files:
Transpose.h Conjugate.h Dot.h
*/
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
const Index PacketSize = internal::packet_traits<Scalar>::size;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
square = SquareMatrixType::Random(rows, rows);
VectorType v1 = VectorType::Random(rows),
v2 = VectorType::Random(rows),
v3 = VectorType::Random(rows),
vzero = VectorType::Zero(rows);
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
// check basic compatibility of adjoint, transpose, conjugate
VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
// check multiplicative behavior
VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
// check basic properties of dot, squaredNorm
VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
// like in testBasicStuff, test operator() to check const-qualification
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
// check inplace transpose
m3 = m1;
m3.transposeInPlace();
VERIFY_IS_APPROX(m3,m1.transpose());
m3.transposeInPlace();
VERIFY_IS_APPROX(m3,m1);
if(PacketSize<m3.rows() && PacketSize<m3.cols())
{
m3 = m1;
Index i = internal::random<Index>(0,m3.rows()-PacketSize);
Index j = internal::random<Index>(0,m3.cols()-PacketSize);
m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
VERIFY_IS_APPROX(m3,m1);
}
// check inplace adjoint
m3 = m1;
m3.adjointInPlace();
VERIFY_IS_APPROX(m3,m1.adjoint());
m3.transposeInPlace();
VERIFY_IS_APPROX(m3,m1.conjugate());
// check mixed dot product
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
RealVectorType rv1 = RealVectorType::Random(rows);
VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
VERIFY( is_same_type(m1,m1.template conjugateIf<false>()) );
VERIFY( is_same_type(m1.conjugate(),m1.template conjugateIf<true>()) );
}
template<int>
void adjoint_extra()
{
MatrixXcf a(10,10), b(10,10);
VERIFY_RAISES_ASSERT(a = a.transpose());
VERIFY_RAISES_ASSERT(a = a.transpose() + b);
VERIFY_RAISES_ASSERT(a = b + a.transpose());
VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
VERIFY_RAISES_ASSERT(a = a.adjoint());
VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
VERIFY_RAISES_ASSERT(a = b + a.adjoint());
// no assertion should be triggered for these cases:
a.transpose() = a.transpose();
a.transpose() += a.transpose();
a.transpose() += a.transpose() + b;
a.transpose() = a.adjoint();
a.transpose() += a.adjoint();
a.transpose() += a.adjoint() + b;
// regression tests for check_for_aliasing
MatrixXd c(10,10);
c = 1.0 * MatrixXd::Ones(10,10) + c;
c = MatrixXd::Ones(10,10) * 1.0 + c;
c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
// regression for bug 1646
for (int j = 0; j < 10; ++j) {
c.col(j).head(j) = c.row(j).head(j);
}
for (int j = 0; j < 10; ++j) {
c.col(j) = c.row(j);
}
a.conservativeResize(1,1);
a = a.transpose();
a.conservativeResize(0,0);
a = a.transpose();
}
EIGEN_DECLARE_TEST(adjoint)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( adjoint(Matrix3d()) );
CALL_SUBTEST_3( adjoint(Matrix4f()) );
CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
// Complement for 128 bits vectorization:
CALL_SUBTEST_8( adjoint(Matrix2d()) );
CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
// 256 bits vectorization:
CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
}
// test a large static matrix only once
CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
CALL_SUBTEST_13( adjoint_extra<0>() );
}
Event Timeline
Log In to Comment