Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102454569
diagonal.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 22:03
Size
4 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 22:03 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24324052
Attached To
rDLMA Diffusion limited mixed aggregation
diagonal.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template
<
typename
MatrixType
>
void
diagonal
(
const
MatrixType
&
m
)
{
typedef
typename
MatrixType
::
Scalar
Scalar
;
Index
rows
=
m
.
rows
();
Index
cols
=
m
.
cols
();
MatrixType
m1
=
MatrixType
::
Random
(
rows
,
cols
),
m2
=
MatrixType
::
Random
(
rows
,
cols
);
Scalar
s1
=
internal
::
random
<
Scalar
>
();
//check diagonal()
VERIFY_IS_APPROX
(
m1
.
diagonal
(),
m1
.
transpose
().
diagonal
());
m2
.
diagonal
()
=
2
*
m1
.
diagonal
();
m2
.
diagonal
()[
0
]
*=
3
;
if
(
rows
>
2
)
{
enum
{
N1
=
MatrixType
::
RowsAtCompileTime
>
2
?
2
:
0
,
N2
=
MatrixType
::
RowsAtCompileTime
>
1
?
-
1
:
0
};
// check sub/super diagonal
if
(
MatrixType
::
SizeAtCompileTime
!=
Dynamic
)
{
VERIFY
(
m1
.
template
diagonal
<
N1
>
().
RowsAtCompileTime
==
m1
.
diagonal
(
N1
).
size
());
VERIFY
(
m1
.
template
diagonal
<
N2
>
().
RowsAtCompileTime
==
m1
.
diagonal
(
N2
).
size
());
}
m2
.
template
diagonal
<
N1
>
()
=
2
*
m1
.
template
diagonal
<
N1
>
();
VERIFY_IS_APPROX
(
m2
.
template
diagonal
<
N1
>
(),
static_cast
<
Scalar
>
(
2
)
*
m1
.
diagonal
(
N1
));
m2
.
template
diagonal
<
N1
>
()[
0
]
*=
3
;
VERIFY_IS_APPROX
(
m2
.
template
diagonal
<
N1
>
()[
0
],
static_cast
<
Scalar
>
(
6
)
*
m1
.
template
diagonal
<
N1
>
()[
0
]);
m2
.
template
diagonal
<
N2
>
()
=
2
*
m1
.
template
diagonal
<
N2
>
();
m2
.
template
diagonal
<
N2
>
()[
0
]
*=
3
;
VERIFY_IS_APPROX
(
m2
.
template
diagonal
<
N2
>
()[
0
],
static_cast
<
Scalar
>
(
6
)
*
m1
.
template
diagonal
<
N2
>
()[
0
]);
m2
.
diagonal
(
N1
)
=
2
*
m1
.
diagonal
(
N1
);
VERIFY_IS_APPROX
(
m2
.
template
diagonal
<
N1
>
(),
static_cast
<
Scalar
>
(
2
)
*
m1
.
diagonal
(
N1
));
m2
.
diagonal
(
N1
)[
0
]
*=
3
;
VERIFY_IS_APPROX
(
m2
.
diagonal
(
N1
)[
0
],
static_cast
<
Scalar
>
(
6
)
*
m1
.
diagonal
(
N1
)[
0
]);
m2
.
diagonal
(
N2
)
=
2
*
m1
.
diagonal
(
N2
);
VERIFY_IS_APPROX
(
m2
.
template
diagonal
<
N2
>
(),
static_cast
<
Scalar
>
(
2
)
*
m1
.
diagonal
(
N2
));
m2
.
diagonal
(
N2
)[
0
]
*=
3
;
VERIFY_IS_APPROX
(
m2
.
diagonal
(
N2
)[
0
],
static_cast
<
Scalar
>
(
6
)
*
m1
.
diagonal
(
N2
)[
0
]);
m2
.
diagonal
(
N2
).
x
()
=
s1
;
VERIFY_IS_APPROX
(
m2
.
diagonal
(
N2
).
x
(),
s1
);
m2
.
diagonal
(
N2
).
coeffRef
(
0
)
=
Scalar
(
2
)
*
s1
;
VERIFY_IS_APPROX
(
m2
.
diagonal
(
N2
).
coeff
(
0
),
Scalar
(
2
)
*
s1
);
}
VERIFY
(
m1
.
diagonal
(
cols
).
size
()
==
0
);
VERIFY
(
m1
.
diagonal
(
-
rows
).
size
()
==
0
);
}
template
<
typename
MatrixType
>
void
diagonal_assert
(
const
MatrixType
&
m
)
{
Index
rows
=
m
.
rows
();
Index
cols
=
m
.
cols
();
MatrixType
m1
=
MatrixType
::
Random
(
rows
,
cols
);
if
(
rows
>=
2
&&
cols
>=
2
)
{
VERIFY_RAISES_ASSERT
(
m1
+=
m1
.
diagonal
()
);
VERIFY_RAISES_ASSERT
(
m1
-=
m1
.
diagonal
()
);
VERIFY_RAISES_ASSERT
(
m1
.
array
()
*=
m1
.
diagonal
().
array
()
);
VERIFY_RAISES_ASSERT
(
m1
.
array
()
/=
m1
.
diagonal
().
array
()
);
}
VERIFY_RAISES_ASSERT
(
m1
.
diagonal
(
cols
+
1
)
);
VERIFY_RAISES_ASSERT
(
m1
.
diagonal
(
-
(
rows
+
1
))
);
}
EIGEN_DECLARE_TEST
(
diagonal
)
{
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
CALL_SUBTEST_1
(
diagonal
(
Matrix
<
float
,
1
,
1
>
())
);
CALL_SUBTEST_1
(
diagonal
(
Matrix
<
float
,
4
,
9
>
())
);
CALL_SUBTEST_1
(
diagonal
(
Matrix
<
float
,
7
,
3
>
())
);
CALL_SUBTEST_2
(
diagonal
(
Matrix4d
())
);
CALL_SUBTEST_2
(
diagonal
(
MatrixXcf
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
CALL_SUBTEST_2
(
diagonal
(
MatrixXi
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
CALL_SUBTEST_2
(
diagonal
(
MatrixXcd
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
CALL_SUBTEST_1
(
diagonal
(
MatrixXf
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
CALL_SUBTEST_1
(
diagonal
(
Matrix
<
float
,
Dynamic
,
4
>
(
3
,
4
))
);
CALL_SUBTEST_1
(
diagonal_assert
(
MatrixXf
(
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
),
internal
::
random
<
int
>
(
1
,
EIGEN_TEST_MAX_SIZE
)))
);
}
}
Event Timeline
Log In to Comment