Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120346466
mapped_matrix.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Jul 3, 16:46
Size
7 KB
Mime Type
text/x-c
Expires
Sat, Jul 5, 16:46 (2 d)
Engine
blob
Format
Raw Data
Handle
27175710
Attached To
rDLMA Diffusion limited mixed aggregation
mapped_matrix.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif
#include "main.h"
#define EIGEN_TESTMAP_MAX_SIZE 256
template<typename VectorType> void map_class_vector(const VectorType& m)
{
typedef typename VectorType::Scalar Scalar;
Index size = m.size();
Scalar* array1 = internal::aligned_new<Scalar>(size);
Scalar* array2 = internal::aligned_new<Scalar>(size);
Scalar* array3 = new Scalar[size+1];
Scalar* array3unaligned = (internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3;
Scalar array4[EIGEN_TESTMAP_MAX_SIZE];
Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size);
Map<VectorType, AlignedMax>(array2, size) = Map<VectorType,AlignedMax>(array1, size);
Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
Map<VectorType>(array4, size) = Map<VectorType,AlignedMax>(array1, size);
VectorType ma1 = Map<VectorType, AlignedMax>(array1, size);
VectorType ma2 = Map<VectorType, AlignedMax>(array2, size);
VectorType ma3 = Map<VectorType>(array3unaligned, size);
VectorType ma4 = Map<VectorType>(array4, size);
VERIFY_IS_EQUAL(ma1, ma2);
VERIFY_IS_EQUAL(ma1, ma3);
VERIFY_IS_EQUAL(ma1, ma4);
#ifdef EIGEN_VECTORIZE
if(internal::packet_traits<Scalar>::Vectorizable && size>=AlignedMax)
VERIFY_RAISES_ASSERT((Map<VectorType,AlignedMax>(array3unaligned, size)))
#endif
internal::aligned_delete(array1, size);
internal::aligned_delete(array2, size);
delete[] array3;
}
template<typename MatrixType> void map_class_matrix(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows(), cols = m.cols(), size = rows*cols;
Scalar s1 = internal::random<Scalar>();
// array1 and array2 -> aligned heap allocation
Scalar* array1 = internal::aligned_new<Scalar>(size);
for(int i = 0; i < size; i++) array1[i] = Scalar(1);
Scalar* array2 = internal::aligned_new<Scalar>(size);
for(int i = 0; i < size; i++) array2[i] = Scalar(1);
// array3unaligned -> unaligned pointer to heap
Scalar* array3 = new Scalar[size+1];
Index sizep1 = size + 1; // <- without this temporary MSVC 2103 generates bad code
for(Index i = 0; i < sizep1; i++) array3[i] = Scalar(1);
Scalar* array3unaligned = (internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3;
Scalar array4[256];
if(size<=256)
for(int i = 0; i < size; i++) array4[i] = Scalar(1);
Map<MatrixType> map1(array1, rows, cols);
Map<MatrixType, AlignedMax> map2(array2, rows, cols);
Map<MatrixType> map3(array3unaligned, rows, cols);
Map<MatrixType> map4(array4, rows, cols);
VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows,cols));
VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows,cols));
VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows,cols));
map1 = MatrixType::Random(rows,cols);
map2 = map1;
map3 = map1;
MatrixType ma1 = map1;
MatrixType ma2 = map2;
MatrixType ma3 = map3;
VERIFY_IS_EQUAL(map1, map2);
VERIFY_IS_EQUAL(map1, map3);
VERIFY_IS_EQUAL(ma1, ma2);
VERIFY_IS_EQUAL(ma1, ma3);
VERIFY_IS_EQUAL(ma1, map3);
VERIFY_IS_APPROX(s1*map1, s1*map2);
VERIFY_IS_APPROX(s1*ma1, s1*ma2);
VERIFY_IS_EQUAL(s1*ma1, s1*ma3);
VERIFY_IS_APPROX(s1*map1, s1*map3);
map2 *= s1;
map3 *= s1;
VERIFY_IS_APPROX(s1*map1, map2);
VERIFY_IS_APPROX(s1*map1, map3);
if(size<=256)
{
VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows,cols));
map4 = map1;
MatrixType ma4 = map4;
VERIFY_IS_EQUAL(map1, map4);
VERIFY_IS_EQUAL(ma1, map4);
VERIFY_IS_EQUAL(ma1, ma4);
VERIFY_IS_APPROX(s1*map1, s1*map4);
map4 *= s1;
VERIFY_IS_APPROX(s1*map1, map4);
}
internal::aligned_delete(array1, size);
internal::aligned_delete(array2, size);
delete[] array3;
}
template<typename VectorType> void map_static_methods(const VectorType& m)
{
typedef typename VectorType::Scalar Scalar;
Index size = m.size();
Scalar* array1 = internal::aligned_new<Scalar>(size);
Scalar* array2 = internal::aligned_new<Scalar>(size);
Scalar* array3 = new Scalar[size+1];
Scalar* array3unaligned = internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3;
VectorType::MapAligned(array1, size) = VectorType::Random(size);
VectorType::Map(array2, size) = VectorType::Map(array1, size);
VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
VectorType ma1 = VectorType::Map(array1, size);
VectorType ma2 = VectorType::MapAligned(array2, size);
VectorType ma3 = VectorType::Map(array3unaligned, size);
VERIFY_IS_EQUAL(ma1, ma2);
VERIFY_IS_EQUAL(ma1, ma3);
internal::aligned_delete(array1, size);
internal::aligned_delete(array2, size);
delete[] array3;
}
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
{
// there's a lot that we can't test here while still having this test compile!
// the only possible approach would be to run a script trying to compile stuff and checking that it fails.
// CMake can help with that.
// verify that map-to-const don't have LvalueBit
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
VERIFY( !(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit) );
VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
VERIFY( !(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit) );
}
template<typename Scalar>
void map_not_aligned_on_scalar()
{
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
Index size = 11;
Scalar* array1 = internal::aligned_new<Scalar>((size+1)*(size+1)+1);
Scalar* array2 = reinterpret_cast<Scalar*>(sizeof(Scalar)/2+std::size_t(array1));
Map<MatrixType,0,OuterStride<> > map2(array2, size, size, OuterStride<>(size+1));
MatrixType m2 = MatrixType::Random(size,size);
map2 = m2;
VERIFY_IS_EQUAL(m2, map2);
typedef Matrix<Scalar,Dynamic,1> VectorType;
Map<VectorType> map3(array2, size);
MatrixType v3 = VectorType::Random(size);
map3 = v3;
VERIFY_IS_EQUAL(v3, map3);
internal::aligned_delete(array1, (size+1)*(size+1)+1);
}
EIGEN_DECLARE_TEST(mapped_matrix)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) );
CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( map_class_vector(Vector4d()) );
CALL_SUBTEST_2( map_class_vector(VectorXd(13)) );
CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
CALL_SUBTEST_3( map_class_vector(RowVector4f()) );
CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) );
CALL_SUBTEST_5( map_class_vector(VectorXi(12)) );
CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );
CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( map_class_matrix(Matrix4d()) );
CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) );
CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) );
CALL_SUBTEST_7( map_static_methods(Vector3f()) );
CALL_SUBTEST_8( map_static_methods(RowVector3d()) );
CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) );
CALL_SUBTEST_10( map_static_methods(VectorXf(12)) );
CALL_SUBTEST_11( map_not_aligned_on_scalar<double>() );
}
}
Event Timeline
Log In to Comment