Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102458305
mapstride.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 22:59
Size
11 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 22:59 (2 d)
Engine
blob
Format
Raw Data
Handle
24324361
Attached To
rDLMA Diffusion limited mixed aggregation
mapstride.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template
<
int
Alignment
,
typename
VectorType
>
void
map_class_vector
(
const
VectorType
&
m
)
{
typedef
typename
VectorType
::
Scalar
Scalar
;
Index
size
=
m
.
size
();
VectorType
v
=
VectorType
::
Random
(
size
);
Index
arraysize
=
3
*
size
;
Scalar
*
a_array
=
internal
::
aligned_new
<
Scalar
>
(
arraysize
+
1
);
Scalar
*
array
=
a_array
;
if
(
Alignment
!=
Aligned
)
array
=
(
Scalar
*
)(
internal
::
IntPtr
(
a_array
)
+
(
internal
::
packet_traits
<
Scalar
>::
AlignedOnScalar
?
sizeof
(
Scalar
)
:
sizeof
(
typename
NumTraits
<
Scalar
>::
Real
)));
{
Map
<
VectorType
,
Alignment
,
InnerStride
<
3
>
>
map
(
array
,
size
);
map
=
v
;
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
VERIFY
(
array
[
3
*
i
]
==
v
[
i
]);
VERIFY
(
map
[
i
]
==
v
[
i
]);
}
}
{
Map
<
VectorType
,
Unaligned
,
InnerStride
<
Dynamic
>
>
map
(
array
,
size
,
InnerStride
<
Dynamic
>
(
2
));
map
=
v
;
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
VERIFY
(
array
[
2
*
i
]
==
v
[
i
]);
VERIFY
(
map
[
i
]
==
v
[
i
]);
}
}
internal
::
aligned_delete
(
a_array
,
arraysize
+
1
);
}
template
<
int
Alignment
,
typename
MatrixType
>
void
map_class_matrix
(
const
MatrixType
&
_m
)
{
typedef
typename
MatrixType
::
Scalar
Scalar
;
Index
rows
=
_m
.
rows
(),
cols
=
_m
.
cols
();
MatrixType
m
=
MatrixType
::
Random
(
rows
,
cols
);
Scalar
s1
=
internal
::
random
<
Scalar
>
();
Index
arraysize
=
4
*
(
rows
+
4
)
*
(
cols
+
4
);
Scalar
*
a_array1
=
internal
::
aligned_new
<
Scalar
>
(
arraysize
+
1
);
Scalar
*
array1
=
a_array1
;
if
(
Alignment
!=
Aligned
)
array1
=
(
Scalar
*
)(
internal
::
IntPtr
(
a_array1
)
+
(
internal
::
packet_traits
<
Scalar
>::
AlignedOnScalar
?
sizeof
(
Scalar
)
:
sizeof
(
typename
NumTraits
<
Scalar
>::
Real
)));
Scalar
a_array2
[
256
];
Scalar
*
array2
=
a_array2
;
if
(
Alignment
!=
Aligned
)
array2
=
(
Scalar
*
)(
internal
::
IntPtr
(
a_array2
)
+
(
internal
::
packet_traits
<
Scalar
>::
AlignedOnScalar
?
sizeof
(
Scalar
)
:
sizeof
(
typename
NumTraits
<
Scalar
>::
Real
)));
else
array2
=
(
Scalar
*
)(((
internal
::
UIntPtr
(
a_array2
)
+
EIGEN_MAX_ALIGN_BYTES
-
1
)
/
EIGEN_MAX_ALIGN_BYTES
)
*
EIGEN_MAX_ALIGN_BYTES
);
Index
maxsize2
=
a_array2
-
array2
+
256
;
// test no inner stride and some dynamic outer stride
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
if
(
k
==
1
&&
(
m
.
innerSize
()
+
1
)
*
m
.
outerSize
()
>
maxsize2
)
break
;
Scalar
*
array
=
(
k
==
0
?
array1
:
array2
);
Map
<
MatrixType
,
Alignment
,
OuterStride
<
Dynamic
>
>
map
(
array
,
rows
,
cols
,
OuterStride
<
Dynamic
>
(
m
.
innerSize
()
+
1
));
map
=
m
;
VERIFY
(
map
.
outerStride
()
==
map
.
innerSize
()
+
1
);
for
(
int
i
=
0
;
i
<
m
.
outerSize
();
++
i
)
for
(
int
j
=
0
;
j
<
m
.
innerSize
();
++
j
)
{
VERIFY
(
array
[
map
.
outerStride
()
*
i
+
j
]
==
m
.
coeffByOuterInner
(
i
,
j
));
VERIFY
(
map
.
coeffByOuterInner
(
i
,
j
)
==
m
.
coeffByOuterInner
(
i
,
j
));
}
VERIFY_IS_APPROX
(
s1
*
map
,
s1
*
m
);
map
*=
s1
;
VERIFY_IS_APPROX
(
map
,
s1
*
m
);
}
// test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
// this allows to hit the special case where it's vectorizable.
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
if
(
k
==
1
&&
(
m
.
innerSize
()
+
4
)
*
m
.
outerSize
()
>
maxsize2
)
break
;
Scalar
*
array
=
(
k
==
0
?
array1
:
array2
);
enum
{
InnerSize
=
MatrixType
::
InnerSizeAtCompileTime
,
OuterStrideAtCompileTime
=
InnerSize
==
Dynamic
?
Dynamic
:
InnerSize
+
4
};
Map
<
MatrixType
,
Alignment
,
OuterStride
<
OuterStrideAtCompileTime
>
>
map
(
array
,
rows
,
cols
,
OuterStride
<
OuterStrideAtCompileTime
>
(
m
.
innerSize
()
+
4
));
map
=
m
;
VERIFY
(
map
.
outerStride
()
==
map
.
innerSize
()
+
4
);
for
(
int
i
=
0
;
i
<
m
.
outerSize
();
++
i
)
for
(
int
j
=
0
;
j
<
m
.
innerSize
();
++
j
)
{
VERIFY
(
array
[
map
.
outerStride
()
*
i
+
j
]
==
m
.
coeffByOuterInner
(
i
,
j
));
VERIFY
(
map
.
coeffByOuterInner
(
i
,
j
)
==
m
.
coeffByOuterInner
(
i
,
j
));
}
VERIFY_IS_APPROX
(
s1
*
map
,
s1
*
m
);
map
*=
s1
;
VERIFY_IS_APPROX
(
map
,
s1
*
m
);
}
// test both inner stride and outer stride
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
if
(
k
==
1
&&
(
2
*
m
.
innerSize
()
+
1
)
*
(
m
.
outerSize
()
*
2
)
>
maxsize2
)
break
;
Scalar
*
array
=
(
k
==
0
?
array1
:
array2
);
Map
<
MatrixType
,
Alignment
,
Stride
<
Dynamic
,
Dynamic
>
>
map
(
array
,
rows
,
cols
,
Stride
<
Dynamic
,
Dynamic
>
(
2
*
m
.
innerSize
()
+
1
,
2
));
map
=
m
;
VERIFY
(
map
.
outerStride
()
==
2
*
map
.
innerSize
()
+
1
);
VERIFY
(
map
.
innerStride
()
==
2
);
for
(
int
i
=
0
;
i
<
m
.
outerSize
();
++
i
)
for
(
int
j
=
0
;
j
<
m
.
innerSize
();
++
j
)
{
VERIFY
(
array
[
map
.
outerStride
()
*
i
+
map
.
innerStride
()
*
j
]
==
m
.
coeffByOuterInner
(
i
,
j
));
VERIFY
(
map
.
coeffByOuterInner
(
i
,
j
)
==
m
.
coeffByOuterInner
(
i
,
j
));
}
VERIFY_IS_APPROX
(
s1
*
map
,
s1
*
m
);
map
*=
s1
;
VERIFY_IS_APPROX
(
map
,
s1
*
m
);
}
// test inner stride and no outer stride
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
if
(
k
==
1
&&
(
m
.
innerSize
()
*
2
)
*
m
.
outerSize
()
>
maxsize2
)
break
;
Scalar
*
array
=
(
k
==
0
?
array1
:
array2
);
Map
<
MatrixType
,
Alignment
,
InnerStride
<
Dynamic
>
>
map
(
array
,
rows
,
cols
,
InnerStride
<
Dynamic
>
(
2
));
map
=
m
;
VERIFY
(
map
.
outerStride
()
==
map
.
innerSize
()
*
2
);
for
(
int
i
=
0
;
i
<
m
.
outerSize
();
++
i
)
for
(
int
j
=
0
;
j
<
m
.
innerSize
();
++
j
)
{
VERIFY
(
array
[
map
.
innerSize
()
*
i
*
2
+
j
*
2
]
==
m
.
coeffByOuterInner
(
i
,
j
));
VERIFY
(
map
.
coeffByOuterInner
(
i
,
j
)
==
m
.
coeffByOuterInner
(
i
,
j
));
}
VERIFY_IS_APPROX
(
s1
*
map
,
s1
*
m
);
map
*=
s1
;
VERIFY_IS_APPROX
(
map
,
s1
*
m
);
}
// test negative strides
{
Matrix
<
Scalar
,
Dynamic
,
1
>::
Map
(
a_array1
,
arraysize
+
1
).
setRandom
();
Index
outerstride
=
m
.
innerSize
()
+
4
;
Scalar
*
array
=
array1
;
{
Map
<
MatrixType
,
Alignment
,
OuterStride
<>
>
map1
(
array
,
rows
,
cols
,
OuterStride
<>
(
outerstride
));
Map
<
MatrixType
,
Unaligned
,
OuterStride
<>
>
map2
(
array
+
(
m
.
outerSize
()
-
1
)
*
outerstride
,
rows
,
cols
,
OuterStride
<>
(
-
outerstride
));
if
(
MatrixType
::
IsRowMajor
)
VERIFY_IS_APPROX
(
map1
.
colwise
().
reverse
(),
map2
);
else
VERIFY_IS_APPROX
(
map1
.
rowwise
().
reverse
(),
map2
);
}
{
Map
<
MatrixType
,
Alignment
,
OuterStride
<>
>
map1
(
array
,
rows
,
cols
,
OuterStride
<>
(
outerstride
));
Map
<
MatrixType
,
Unaligned
,
Stride
<
Dynamic
,
Dynamic
>
>
map2
(
array
+
(
m
.
outerSize
()
-
1
)
*
outerstride
+
m
.
innerSize
()
-
1
,
rows
,
cols
,
Stride
<
Dynamic
,
Dynamic
>
(
-
outerstride
,
-
1
));
VERIFY_IS_APPROX
(
map1
.
reverse
(),
map2
);
}
{
Map
<
MatrixType
,
Alignment
,
OuterStride
<>
>
map1
(
array
,
rows
,
cols
,
OuterStride
<>
(
outerstride
));
Map
<
MatrixType
,
Unaligned
,
Stride
<
Dynamic
,
-
1
>
>
map2
(
array
+
(
m
.
outerSize
()
-
1
)
*
outerstride
+
m
.
innerSize
()
-
1
,
rows
,
cols
,
Stride
<
Dynamic
,
-
1
>
(
-
outerstride
,
-
1
));
VERIFY_IS_APPROX
(
map1
.
reverse
(),
map2
);
}
}
internal
::
aligned_delete
(
a_array1
,
arraysize
+
1
);
}
// Additional tests for inner-stride but no outer-stride
template
<
int
>
void
bug1453
()
{
const
int
data
[]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
};
typedef
Matrix
<
int
,
Dynamic
,
Dynamic
,
RowMajor
>
RowMatrixXi
;
typedef
Matrix
<
int
,
2
,
3
,
ColMajor
>
ColMatrix23i
;
typedef
Matrix
<
int
,
3
,
2
,
ColMajor
>
ColMatrix32i
;
typedef
Matrix
<
int
,
2
,
3
,
RowMajor
>
RowMatrix23i
;
typedef
Matrix
<
int
,
3
,
2
,
RowMajor
>
RowMatrix32i
;
VERIFY_IS_APPROX
(
MatrixXi
::
Map
(
data
,
2
,
3
,
InnerStride
<
2
>
()),
MatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
MatrixXi
::
Map
(
data
,
2
,
3
,
InnerStride
<>
(
2
)),
MatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
MatrixXi
::
Map
(
data
,
3
,
2
,
InnerStride
<
2
>
()),
MatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
MatrixXi
::
Map
(
data
,
3
,
2
,
InnerStride
<>
(
2
)),
MatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrixXi
::
Map
(
data
,
2
,
3
,
InnerStride
<
2
>
()),
RowMatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrixXi
::
Map
(
data
,
2
,
3
,
InnerStride
<>
(
2
)),
RowMatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrixXi
::
Map
(
data
,
3
,
2
,
InnerStride
<
2
>
()),
RowMatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrixXi
::
Map
(
data
,
3
,
2
,
InnerStride
<>
(
2
)),
RowMatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
ColMatrix23i
::
Map
(
data
,
InnerStride
<
2
>
()),
MatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
ColMatrix23i
::
Map
(
data
,
InnerStride
<>
(
2
)),
MatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
ColMatrix32i
::
Map
(
data
,
InnerStride
<
2
>
()),
MatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
ColMatrix32i
::
Map
(
data
,
InnerStride
<>
(
2
)),
MatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrix23i
::
Map
(
data
,
InnerStride
<
2
>
()),
RowMatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrix23i
::
Map
(
data
,
InnerStride
<>
(
2
)),
RowMatrixXi
::
Map
(
data
,
2
,
3
,
Stride
<
6
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrix32i
::
Map
(
data
,
InnerStride
<
2
>
()),
RowMatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
4
,
2
>
()));
VERIFY_IS_APPROX
(
RowMatrix32i
::
Map
(
data
,
InnerStride
<>
(
2
)),
RowMatrixXi
::
Map
(
data
,
3
,
2
,
Stride
<
4
,
2
>
()));
}
EIGEN_DECLARE_TEST
(
mapstride
)
{
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
int
maxn
=
3
;
CALL_SUBTEST_1
(
map_class_vector
<
Aligned
>
(
Matrix
<
float
,
1
,
1
>
())
);
CALL_SUBTEST_1
(
map_class_vector
<
Unaligned
>
(
Matrix
<
float
,
1
,
1
>
())
);
CALL_SUBTEST_2
(
map_class_vector
<
Aligned
>
(
Vector4d
())
);
CALL_SUBTEST_2
(
map_class_vector
<
Unaligned
>
(
Vector4d
())
);
CALL_SUBTEST_3
(
map_class_vector
<
Aligned
>
(
RowVector4f
())
);
CALL_SUBTEST_3
(
map_class_vector
<
Unaligned
>
(
RowVector4f
())
);
CALL_SUBTEST_4
(
map_class_vector
<
Aligned
>
(
VectorXcf
(
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_4
(
map_class_vector
<
Unaligned
>
(
VectorXcf
(
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_5
(
map_class_vector
<
Aligned
>
(
VectorXi
(
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_5
(
map_class_vector
<
Unaligned
>
(
VectorXi
(
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_1
(
map_class_matrix
<
Aligned
>
(
Matrix
<
float
,
1
,
1
>
())
);
CALL_SUBTEST_1
(
map_class_matrix
<
Unaligned
>
(
Matrix
<
float
,
1
,
1
>
())
);
CALL_SUBTEST_2
(
map_class_matrix
<
Aligned
>
(
Matrix4d
())
);
CALL_SUBTEST_2
(
map_class_matrix
<
Unaligned
>
(
Matrix4d
())
);
CALL_SUBTEST_3
(
map_class_matrix
<
Aligned
>
(
Matrix
<
float
,
3
,
5
>
())
);
CALL_SUBTEST_3
(
map_class_matrix
<
Unaligned
>
(
Matrix
<
float
,
3
,
5
>
())
);
CALL_SUBTEST_3
(
map_class_matrix
<
Aligned
>
(
Matrix
<
float
,
4
,
8
>
())
);
CALL_SUBTEST_3
(
map_class_matrix
<
Unaligned
>
(
Matrix
<
float
,
4
,
8
>
())
);
CALL_SUBTEST_4
(
map_class_matrix
<
Aligned
>
(
MatrixXcf
(
internal
::
random
<
int
>
(
1
,
maxn
),
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_4
(
map_class_matrix
<
Unaligned
>
(
MatrixXcf
(
internal
::
random
<
int
>
(
1
,
maxn
),
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_5
(
map_class_matrix
<
Aligned
>
(
MatrixXi
(
internal
::
random
<
int
>
(
1
,
maxn
),
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_5
(
map_class_matrix
<
Unaligned
>
(
MatrixXi
(
internal
::
random
<
int
>
(
1
,
maxn
),
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_6
(
map_class_matrix
<
Aligned
>
(
MatrixXcd
(
internal
::
random
<
int
>
(
1
,
maxn
),
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_6
(
map_class_matrix
<
Unaligned
>
(
MatrixXcd
(
internal
::
random
<
int
>
(
1
,
maxn
),
internal
::
random
<
int
>
(
1
,
maxn
)))
);
CALL_SUBTEST_5
(
bug1453
<
0
>
()
);
TEST_SET_BUT_UNUSED_VARIABLE
(
maxn
);
}
}
Event Timeline
Log In to Comment