Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102556707
qr_colpivoting.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Feb 21, 23:36
Size
13 KB
Mime Type
text/x-c++
Expires
Sun, Feb 23, 23:36 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24359721
Attached To
rDLMA Diffusion limited mixed aggregation
qr_colpivoting.cpp
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
#include <Eigen/SVD>
#include "solverbase.h"
template
<
typename
MatrixType
>
void
cod
()
{
STATIC_CHECK
((
internal
::
is_same
<
typename
CompleteOrthogonalDecomposition
<
MatrixType
>::
StorageIndex
,
int
>::
value
));
Index
rows
=
internal
::
random
<
Index
>
(
2
,
EIGEN_TEST_MAX_SIZE
);
Index
cols
=
internal
::
random
<
Index
>
(
2
,
EIGEN_TEST_MAX_SIZE
);
Index
cols2
=
internal
::
random
<
Index
>
(
2
,
EIGEN_TEST_MAX_SIZE
);
Index
rank
=
internal
::
random
<
Index
>
(
1
,
(
std
::
min
)(
rows
,
cols
)
-
1
);
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
Matrix
<
Scalar
,
MatrixType
::
RowsAtCompileTime
,
MatrixType
::
RowsAtCompileTime
>
MatrixQType
;
MatrixType
matrix
;
createRandomPIMatrixOfRank
(
rank
,
rows
,
cols
,
matrix
);
CompleteOrthogonalDecomposition
<
MatrixType
>
cod
(
matrix
);
VERIFY
(
rank
==
cod
.
rank
());
VERIFY
(
cols
-
cod
.
rank
()
==
cod
.
dimensionOfKernel
());
VERIFY
(
!
cod
.
isInjective
());
VERIFY
(
!
cod
.
isInvertible
());
VERIFY
(
!
cod
.
isSurjective
());
MatrixQType
q
=
cod
.
householderQ
();
VERIFY_IS_UNITARY
(
q
);
MatrixType
z
=
cod
.
matrixZ
();
VERIFY_IS_UNITARY
(
z
);
MatrixType
t
;
t
.
setZero
(
rows
,
cols
);
t
.
topLeftCorner
(
rank
,
rank
)
=
cod
.
matrixT
().
topLeftCorner
(
rank
,
rank
).
template
triangularView
<
Upper
>
();
MatrixType
c
=
q
*
t
*
z
*
cod
.
colsPermutation
().
inverse
();
VERIFY_IS_APPROX
(
matrix
,
c
);
check_solverbase
<
MatrixType
,
MatrixType
>
(
matrix
,
cod
,
rows
,
cols
,
cols2
);
// Verify that we get the same minimum-norm solution as the SVD.
MatrixType
exact_solution
=
MatrixType
::
Random
(
cols
,
cols2
);
MatrixType
rhs
=
matrix
*
exact_solution
;
MatrixType
cod_solution
=
cod
.
solve
(
rhs
);
JacobiSVD
<
MatrixType
>
svd
(
matrix
,
ComputeThinU
|
ComputeThinV
);
MatrixType
svd_solution
=
svd
.
solve
(
rhs
);
VERIFY_IS_APPROX
(
cod_solution
,
svd_solution
);
MatrixType
pinv
=
cod
.
pseudoInverse
();
VERIFY_IS_APPROX
(
cod_solution
,
pinv
*
rhs
);
}
template
<
typename
MatrixType
,
int
Cols2
>
void
cod_fixedsize
()
{
enum
{
Rows
=
MatrixType
::
RowsAtCompileTime
,
Cols
=
MatrixType
::
ColsAtCompileTime
};
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
CompleteOrthogonalDecomposition
<
Matrix
<
Scalar
,
Rows
,
Cols
>
>
COD
;
int
rank
=
internal
::
random
<
int
>
(
1
,
(
std
::
min
)(
int
(
Rows
),
int
(
Cols
))
-
1
);
Matrix
<
Scalar
,
Rows
,
Cols
>
matrix
;
createRandomPIMatrixOfRank
(
rank
,
Rows
,
Cols
,
matrix
);
COD
cod
(
matrix
);
VERIFY
(
rank
==
cod
.
rank
());
VERIFY
(
Cols
-
cod
.
rank
()
==
cod
.
dimensionOfKernel
());
VERIFY
(
cod
.
isInjective
()
==
(
rank
==
Rows
));
VERIFY
(
cod
.
isSurjective
()
==
(
rank
==
Cols
));
VERIFY
(
cod
.
isInvertible
()
==
(
cod
.
isInjective
()
&&
cod
.
isSurjective
()));
check_solverbase
<
Matrix
<
Scalar
,
Cols
,
Cols2
>
,
Matrix
<
Scalar
,
Rows
,
Cols2
>
>
(
matrix
,
cod
,
Rows
,
Cols
,
Cols2
);
// Verify that we get the same minimum-norm solution as the SVD.
Matrix
<
Scalar
,
Cols
,
Cols2
>
exact_solution
;
exact_solution
.
setRandom
(
Cols
,
Cols2
);
Matrix
<
Scalar
,
Rows
,
Cols2
>
rhs
=
matrix
*
exact_solution
;
Matrix
<
Scalar
,
Cols
,
Cols2
>
cod_solution
=
cod
.
solve
(
rhs
);
JacobiSVD
<
MatrixType
>
svd
(
matrix
,
ComputeFullU
|
ComputeFullV
);
Matrix
<
Scalar
,
Cols
,
Cols2
>
svd_solution
=
svd
.
solve
(
rhs
);
VERIFY_IS_APPROX
(
cod_solution
,
svd_solution
);
typename
Inverse
<
COD
>::
PlainObject
pinv
=
cod
.
pseudoInverse
();
VERIFY_IS_APPROX
(
cod_solution
,
pinv
*
rhs
);
}
template
<
typename
MatrixType
>
void
qr
()
{
using
std
::
sqrt
;
STATIC_CHECK
((
internal
::
is_same
<
typename
ColPivHouseholderQR
<
MatrixType
>::
StorageIndex
,
int
>::
value
));
Index
rows
=
internal
::
random
<
Index
>
(
2
,
EIGEN_TEST_MAX_SIZE
),
cols
=
internal
::
random
<
Index
>
(
2
,
EIGEN_TEST_MAX_SIZE
),
cols2
=
internal
::
random
<
Index
>
(
2
,
EIGEN_TEST_MAX_SIZE
);
Index
rank
=
internal
::
random
<
Index
>
(
1
,
(
std
::
min
)(
rows
,
cols
)
-
1
);
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
MatrixType
::
RealScalar
RealScalar
;
typedef
Matrix
<
Scalar
,
MatrixType
::
RowsAtCompileTime
,
MatrixType
::
RowsAtCompileTime
>
MatrixQType
;
MatrixType
m1
;
createRandomPIMatrixOfRank
(
rank
,
rows
,
cols
,
m1
);
ColPivHouseholderQR
<
MatrixType
>
qr
(
m1
);
VERIFY_IS_EQUAL
(
rank
,
qr
.
rank
());
VERIFY_IS_EQUAL
(
cols
-
qr
.
rank
(),
qr
.
dimensionOfKernel
());
VERIFY
(
!
qr
.
isInjective
());
VERIFY
(
!
qr
.
isInvertible
());
VERIFY
(
!
qr
.
isSurjective
());
MatrixQType
q
=
qr
.
householderQ
();
VERIFY_IS_UNITARY
(
q
);
MatrixType
r
=
qr
.
matrixQR
().
template
triangularView
<
Upper
>
();
MatrixType
c
=
q
*
r
*
qr
.
colsPermutation
().
inverse
();
VERIFY_IS_APPROX
(
m1
,
c
);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reach the singularity threshold.
RealScalar
threshold
=
sqrt
(
RealScalar
(
rows
))
*
numext
::
abs
(
r
(
0
,
0
))
*
NumTraits
<
Scalar
>::
epsilon
();
for
(
Index
i
=
0
;
i
<
(
std
::
min
)(
rows
,
cols
)
-
1
;
++
i
)
{
RealScalar
x
=
numext
::
abs
(
r
(
i
,
i
));
RealScalar
y
=
numext
::
abs
(
r
(
i
+
1
,
i
+
1
));
if
(
x
<
threshold
&&
y
<
threshold
)
continue
;
if
(
!
test_isApproxOrLessThan
(
y
,
x
))
{
for
(
Index
j
=
0
;
j
<
(
std
::
min
)(
rows
,
cols
);
++
j
)
{
std
::
cout
<<
"i = "
<<
j
<<
", |r_ii| = "
<<
numext
::
abs
(
r
(
j
,
j
))
<<
std
::
endl
;
}
std
::
cout
<<
"Failure at i="
<<
i
<<
", rank="
<<
rank
<<
", threshold="
<<
threshold
<<
std
::
endl
;
}
VERIFY_IS_APPROX_OR_LESS_THAN
(
y
,
x
);
}
check_solverbase
<
MatrixType
,
MatrixType
>
(
m1
,
qr
,
rows
,
cols
,
cols2
);
{
MatrixType
m2
,
m3
;
Index
size
=
rows
;
do
{
m1
=
MatrixType
::
Random
(
size
,
size
);
qr
.
compute
(
m1
);
}
while
(
!
qr
.
isInvertible
());
MatrixType
m1_inv
=
qr
.
inverse
();
m3
=
m1
*
MatrixType
::
Random
(
size
,
cols2
);
m2
=
qr
.
solve
(
m3
);
VERIFY_IS_APPROX
(
m2
,
m1_inv
*
m3
);
}
}
template
<
typename
MatrixType
,
int
Cols2
>
void
qr_fixedsize
()
{
using
std
::
sqrt
;
using
std
::
abs
;
enum
{
Rows
=
MatrixType
::
RowsAtCompileTime
,
Cols
=
MatrixType
::
ColsAtCompileTime
};
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
MatrixType
::
RealScalar
RealScalar
;
int
rank
=
internal
::
random
<
int
>
(
1
,
(
std
::
min
)(
int
(
Rows
),
int
(
Cols
))
-
1
);
Matrix
<
Scalar
,
Rows
,
Cols
>
m1
;
createRandomPIMatrixOfRank
(
rank
,
Rows
,
Cols
,
m1
);
ColPivHouseholderQR
<
Matrix
<
Scalar
,
Rows
,
Cols
>
>
qr
(
m1
);
VERIFY_IS_EQUAL
(
rank
,
qr
.
rank
());
VERIFY_IS_EQUAL
(
Cols
-
qr
.
rank
(),
qr
.
dimensionOfKernel
());
VERIFY_IS_EQUAL
(
qr
.
isInjective
(),
(
rank
==
Rows
));
VERIFY_IS_EQUAL
(
qr
.
isSurjective
(),
(
rank
==
Cols
));
VERIFY_IS_EQUAL
(
qr
.
isInvertible
(),
(
qr
.
isInjective
()
&&
qr
.
isSurjective
()));
Matrix
<
Scalar
,
Rows
,
Cols
>
r
=
qr
.
matrixQR
().
template
triangularView
<
Upper
>
();
Matrix
<
Scalar
,
Rows
,
Cols
>
c
=
qr
.
householderQ
()
*
r
*
qr
.
colsPermutation
().
inverse
();
VERIFY_IS_APPROX
(
m1
,
c
);
check_solverbase
<
Matrix
<
Scalar
,
Cols
,
Cols2
>
,
Matrix
<
Scalar
,
Rows
,
Cols2
>
>
(
m1
,
qr
,
Rows
,
Cols
,
Cols2
);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reache the singularity threshold.
RealScalar
threshold
=
sqrt
(
RealScalar
(
Rows
))
*
(
std
::
abs
)(
r
(
0
,
0
))
*
NumTraits
<
Scalar
>::
epsilon
();
for
(
Index
i
=
0
;
i
<
(
std
::
min
)(
int
(
Rows
),
int
(
Cols
))
-
1
;
++
i
)
{
RealScalar
x
=
numext
::
abs
(
r
(
i
,
i
));
RealScalar
y
=
numext
::
abs
(
r
(
i
+
1
,
i
+
1
));
if
(
x
<
threshold
&&
y
<
threshold
)
continue
;
if
(
!
test_isApproxOrLessThan
(
y
,
x
))
{
for
(
Index
j
=
0
;
j
<
(
std
::
min
)(
int
(
Rows
),
int
(
Cols
));
++
j
)
{
std
::
cout
<<
"i = "
<<
j
<<
", |r_ii| = "
<<
numext
::
abs
(
r
(
j
,
j
))
<<
std
::
endl
;
}
std
::
cout
<<
"Failure at i="
<<
i
<<
", rank="
<<
rank
<<
", threshold="
<<
threshold
<<
std
::
endl
;
}
VERIFY_IS_APPROX_OR_LESS_THAN
(
y
,
x
);
}
}
// This test is meant to verify that pivots are chosen such that
// even for a graded matrix, the diagonal of R falls of roughly
// monotonically until it reaches the threshold for singularity.
// We use the so-called Kahan matrix, which is a famous counter-example
// for rank-revealing QR. See
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// page 3 for more detail.
template
<
typename
MatrixType
>
void
qr_kahan_matrix
()
{
using
std
::
sqrt
;
using
std
::
abs
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
MatrixType
::
RealScalar
RealScalar
;
Index
rows
=
300
,
cols
=
rows
;
MatrixType
m1
;
m1
.
setZero
(
rows
,
cols
);
RealScalar
s
=
std
::
pow
(
NumTraits
<
RealScalar
>::
epsilon
(),
1.0
/
rows
);
RealScalar
c
=
std
::
sqrt
(
1
-
s
*
s
);
RealScalar
pow_s_i
(
1.0
);
// pow(s,i)
for
(
Index
i
=
0
;
i
<
rows
;
++
i
)
{
m1
(
i
,
i
)
=
pow_s_i
;
m1
.
row
(
i
).
tail
(
rows
-
i
-
1
)
=
-
pow_s_i
*
c
*
MatrixType
::
Ones
(
1
,
rows
-
i
-
1
);
pow_s_i
*=
s
;
}
m1
=
(
m1
+
m1
.
transpose
()).
eval
();
ColPivHouseholderQR
<
MatrixType
>
qr
(
m1
);
MatrixType
r
=
qr
.
matrixQR
().
template
triangularView
<
Upper
>
();
RealScalar
threshold
=
std
::
sqrt
(
RealScalar
(
rows
))
*
numext
::
abs
(
r
(
0
,
0
))
*
NumTraits
<
Scalar
>::
epsilon
();
for
(
Index
i
=
0
;
i
<
(
std
::
min
)(
rows
,
cols
)
-
1
;
++
i
)
{
RealScalar
x
=
numext
::
abs
(
r
(
i
,
i
));
RealScalar
y
=
numext
::
abs
(
r
(
i
+
1
,
i
+
1
));
if
(
x
<
threshold
&&
y
<
threshold
)
continue
;
if
(
!
test_isApproxOrLessThan
(
y
,
x
))
{
for
(
Index
j
=
0
;
j
<
(
std
::
min
)(
rows
,
cols
);
++
j
)
{
std
::
cout
<<
"i = "
<<
j
<<
", |r_ii| = "
<<
numext
::
abs
(
r
(
j
,
j
))
<<
std
::
endl
;
}
std
::
cout
<<
"Failure at i="
<<
i
<<
", rank="
<<
qr
.
rank
()
<<
", threshold="
<<
threshold
<<
std
::
endl
;
}
VERIFY_IS_APPROX_OR_LESS_THAN
(
y
,
x
);
}
}
template
<
typename
MatrixType
>
void
qr_invertible
()
{
using
std
::
log
;
using
std
::
abs
;
typedef
typename
NumTraits
<
typename
MatrixType
::
Scalar
>::
Real
RealScalar
;
typedef
typename
MatrixType
::
Scalar
Scalar
;
int
size
=
internal
::
random
<
int
>
(
10
,
50
);
MatrixType
m1
(
size
,
size
),
m2
(
size
,
size
),
m3
(
size
,
size
);
m1
=
MatrixType
::
Random
(
size
,
size
);
if
(
internal
::
is_same
<
RealScalar
,
float
>::
value
)
{
// let's build a matrix more stable to inverse
MatrixType
a
=
MatrixType
::
Random
(
size
,
size
*
2
);
m1
+=
a
*
a
.
adjoint
();
}
ColPivHouseholderQR
<
MatrixType
>
qr
(
m1
);
check_solverbase
<
MatrixType
,
MatrixType
>
(
m1
,
qr
,
size
,
size
,
size
);
// now construct a matrix with prescribed determinant
m1
.
setZero
();
for
(
int
i
=
0
;
i
<
size
;
i
++
)
m1
(
i
,
i
)
=
internal
::
random
<
Scalar
>
();
RealScalar
absdet
=
abs
(
m1
.
diagonal
().
prod
());
m3
=
qr
.
householderQ
();
// get a unitary
m1
=
m3
*
m1
*
m3
;
qr
.
compute
(
m1
);
VERIFY_IS_APPROX
(
absdet
,
qr
.
absDeterminant
());
VERIFY_IS_APPROX
(
log
(
absdet
),
qr
.
logAbsDeterminant
());
}
template
<
typename
MatrixType
>
void
qr_verify_assert
()
{
MatrixType
tmp
;
ColPivHouseholderQR
<
MatrixType
>
qr
;
VERIFY_RAISES_ASSERT
(
qr
.
matrixQR
())
VERIFY_RAISES_ASSERT
(
qr
.
solve
(
tmp
))
VERIFY_RAISES_ASSERT
(
qr
.
transpose
().
solve
(
tmp
))
VERIFY_RAISES_ASSERT
(
qr
.
adjoint
().
solve
(
tmp
))
VERIFY_RAISES_ASSERT
(
qr
.
householderQ
())
VERIFY_RAISES_ASSERT
(
qr
.
dimensionOfKernel
())
VERIFY_RAISES_ASSERT
(
qr
.
isInjective
())
VERIFY_RAISES_ASSERT
(
qr
.
isSurjective
())
VERIFY_RAISES_ASSERT
(
qr
.
isInvertible
())
VERIFY_RAISES_ASSERT
(
qr
.
inverse
())
VERIFY_RAISES_ASSERT
(
qr
.
absDeterminant
())
VERIFY_RAISES_ASSERT
(
qr
.
logAbsDeterminant
())
}
template
<
typename
MatrixType
>
void
cod_verify_assert
()
{
MatrixType
tmp
;
CompleteOrthogonalDecomposition
<
MatrixType
>
cod
;
VERIFY_RAISES_ASSERT
(
cod
.
matrixQTZ
())
VERIFY_RAISES_ASSERT
(
cod
.
solve
(
tmp
))
VERIFY_RAISES_ASSERT
(
cod
.
transpose
().
solve
(
tmp
))
VERIFY_RAISES_ASSERT
(
cod
.
adjoint
().
solve
(
tmp
))
VERIFY_RAISES_ASSERT
(
cod
.
householderQ
())
VERIFY_RAISES_ASSERT
(
cod
.
dimensionOfKernel
())
VERIFY_RAISES_ASSERT
(
cod
.
isInjective
())
VERIFY_RAISES_ASSERT
(
cod
.
isSurjective
())
VERIFY_RAISES_ASSERT
(
cod
.
isInvertible
())
VERIFY_RAISES_ASSERT
(
cod
.
pseudoInverse
())
VERIFY_RAISES_ASSERT
(
cod
.
absDeterminant
())
VERIFY_RAISES_ASSERT
(
cod
.
logAbsDeterminant
())
}
EIGEN_DECLARE_TEST
(
qr_colpivoting
)
{
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
CALL_SUBTEST_1
(
qr
<
MatrixXf
>
()
);
CALL_SUBTEST_2
(
qr
<
MatrixXd
>
()
);
CALL_SUBTEST_3
(
qr
<
MatrixXcd
>
()
);
CALL_SUBTEST_4
((
qr_fixedsize
<
Matrix
<
float
,
3
,
5
>
,
4
>
()
));
CALL_SUBTEST_5
((
qr_fixedsize
<
Matrix
<
double
,
6
,
2
>
,
3
>
()
));
CALL_SUBTEST_5
((
qr_fixedsize
<
Matrix
<
double
,
1
,
1
>
,
1
>
()
));
}
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
CALL_SUBTEST_1
(
cod
<
MatrixXf
>
()
);
CALL_SUBTEST_2
(
cod
<
MatrixXd
>
()
);
CALL_SUBTEST_3
(
cod
<
MatrixXcd
>
()
);
CALL_SUBTEST_4
((
cod_fixedsize
<
Matrix
<
float
,
3
,
5
>
,
4
>
()
));
CALL_SUBTEST_5
((
cod_fixedsize
<
Matrix
<
double
,
6
,
2
>
,
3
>
()
));
CALL_SUBTEST_5
((
cod_fixedsize
<
Matrix
<
double
,
1
,
1
>
,
1
>
()
));
}
for
(
int
i
=
0
;
i
<
g_repeat
;
i
++
)
{
CALL_SUBTEST_1
(
qr_invertible
<
MatrixXf
>
()
);
CALL_SUBTEST_2
(
qr_invertible
<
MatrixXd
>
()
);
CALL_SUBTEST_6
(
qr_invertible
<
MatrixXcf
>
()
);
CALL_SUBTEST_3
(
qr_invertible
<
MatrixXcd
>
()
);
}
CALL_SUBTEST_7
(
qr_verify_assert
<
Matrix3f
>
());
CALL_SUBTEST_8
(
qr_verify_assert
<
Matrix3d
>
());
CALL_SUBTEST_1
(
qr_verify_assert
<
MatrixXf
>
());
CALL_SUBTEST_2
(
qr_verify_assert
<
MatrixXd
>
());
CALL_SUBTEST_6
(
qr_verify_assert
<
MatrixXcf
>
());
CALL_SUBTEST_3
(
qr_verify_assert
<
MatrixXcd
>
());
CALL_SUBTEST_7
(
cod_verify_assert
<
Matrix3f
>
());
CALL_SUBTEST_8
(
cod_verify_assert
<
Matrix3d
>
());
CALL_SUBTEST_1
(
cod_verify_assert
<
MatrixXf
>
());
CALL_SUBTEST_2
(
cod_verify_assert
<
MatrixXd
>
());
CALL_SUBTEST_6
(
cod_verify_assert
<
MatrixXcf
>
());
CALL_SUBTEST_3
(
cod_verify_assert
<
MatrixXcd
>
());
// Test problem size constructors
CALL_SUBTEST_9
(
ColPivHouseholderQR
<
MatrixXf
>
(
10
,
20
));
CALL_SUBTEST_1
(
qr_kahan_matrix
<
MatrixXf
>
()
);
CALL_SUBTEST_2
(
qr_kahan_matrix
<
MatrixXd
>
()
);
}
Event Timeline
Log In to Comment