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1 Introduction

1.1 Motivation

The gyrotron is a wave source device widely used in plasma heating systems.
Its operation is based on the electron cyclotron resonance maser (CRM)
instability. The kinetic energy of electron beam is converted into an electro-
magnetic wave in a cylindrical cavity. Beam electrons are produced by ther-
mic emission of heated ring placed on the magnetron injection gun (MIG).
After emission, electrons are accelerated by externally applied voltage and
guided by magnetic field to form required gyro-motion.

In practice, the operation of the electron gun is influenced by many factors
that are not always taken into account in design phase. Some effects can
significantlly reduce the efficiency of the gyrotron [3]. Experimental evidences
[3], have shown that electrons can be trapped in the magnetic potential well
near the cathode of electron gun.

So called, Penning mechanism takes place wherever magnetic field lines
intersect equipotential lines like it is shown on the figure (1). The electrons
are guided by magnetic field lines and experience force due to parallel com-
ponent of electric field ~F = −e ~E‖ what results in periodic motion around
the center of magnetic potential well. On the other hand ions experience
constantly repulsive force that direct them toward the walls.

The main goal of the thesis is to study the dynamics of trapped elec-
trons using a numerical model and refer theoretical model to experimental
evidences.

Figure 1: Electric and magnetic field configuration
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1.2 Electrostatic PIC model

The first and the most important point of the model is that only one charged
species will be considered - electrons. So, the collection of particles will not
satisfy the condition of quasi-neutrality and is not a real plasma. Strictly
speaking, nonneutral or electron plasma is studied in this work.

Because of the rotational symetry of system, the nonneutral plasma mo-
tion can be considered in two dimensions. Two coordinates will be radius r
and the longitudinal z position in cylindrical coordinates. The region where
electron plasma occurs is surrounded from both sides by metallic walls with
fixed potentials. Applied magnetic field is not trivial and have complex curvi-
linear topology. The experimental setup that will be considered throughout
this report is schematically described on figure (2).

Figure 2: Geometry of the problem

The model applied to further calculation is particle in cell (PIC) method.
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Considered equations have the following form:

d~u

dt
=

q

m
[ ~E(x, t) +

~u× ~B(x)

γ
] (1)

d~x

dt
=

~u

γ
(2)

∇2φ = − ρ
ε0

(3)

where ~u = γ~v, γ =
√

1 + u2

c2
and ~x,~v stand for position and velocity of a

particle, q,m are charge and mass of particle, ~E(x, t), ~B(x) denote electric
and magnetic fields at particle position, ρ is charge density.

Natural boundary conditions are imposed on two nonneutral plasma edges
perpendicular to symmetry axis. Moreover, Dirichlet boundary conditions
are imposed on the metallic walls what fully determine solution of the Poisson
equation. Hence, boundary conditions take the following mathematical form:

φ(R1, z) = φ1

φ(R2, z) = φ2

∂φ(r, z)

∂z
|z=z1 = 0

∂φ(r, z)

∂z
|z=z2 = 0

Where z1, z2 are positions of electron plasma edges, and R1, R2 are radii
at which metallic walls are placed. The meaning of those parameters is
explained on the figure (2).

Momentum and position equations (1), (2) have to be solved for each
particle at given time while equation (3) is solved only once for a given time
but has to take into account contributions from every single particle.

Important fact is that the electric field ~E(x, t) is self-consistent. It means
that its spatial dependence is determined by positions of all particles. So,
electron plasma is pushed by electric field generated by itself. In electrostatic
PIC model, only Poisson equation (3) from complete set of Maxwell equations
is taken into account. The self-consistent electric field can be expressed then
as a gradient of electric potential ~E(x, t) = −~∇φ. So, solution of equation
(3) with appropriate boundary conditions will be an input to equation (2).
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In the model, the magnetic field ~B(x) is assumed to be time independent
and externally imposed. Small effect of moving particle on the magnetic field
is negligible with respect to strong external component.

In PIC method, positions and velocities of particles are tracked in con-
tinous phase space, whereas electric and magnetic fields are calculated in
the grid points, schematically presented on figure (3). In order to find the
magnitudes of the fields in the particle position one has to localize particle
in one of the cells and interpolate fields from grid points to exact position.

The mechanism of the calculation is shortly described on figure (3). First
of all, the electric field at the grid points is calculated with the equation (3)
and interpolated to particle positions. Then, new velocities and positions are
calculated according to equations (1) and (2). And those two processes are
repeated as long as necessary.

Figure 3: Algorithm of PIC method

1.3 Normalization

Equations (1), (2) and (3) define the physical problem to be solved. However,
in nonneutral plasma system calculations, very large or very small numbers
in standard units are involved. So, it is necessary to prevent the calcula-
tion process from possible errors that may come from exceeding the limit of
number that can be stored by machine. This is the reason why before imple-
mentation above equations have to be turned into form that ensure operation
within the optimal range of numbers. Following normalisation constants in
which physical quantities will be expressed were considered through all the
studies:



1.3 Normalization 7

tN =
1

ωpe

vN = c

rN = vN tN =
c

ωpe

BN = BMAX

EN = vNBN = cBMAX

φN = ENrN =
BMAXc

2

ωpe

tN , vN , rN , BN , EN , φN denotes time, velocity, length, magnetic field, elec-
tric field and potential normalisation constants respectively. ωpe is electron
plasma oscilation frequency defined by elementary constants like elementary
charge e, electron mass me, electric constant ε0 and electron plasma density

n0 in the following way: ωpe =
√

n0e2

meε0
. c is the light velocity. BMAX is the

maximal magnitude of external magnetic field. Important fact is that nor-
malisation constant of ~u is the same as normalisation constant for ~v because:

~u = γ~v = γvn~v
′ → ~u

′
= γ~v

′
, uN = vN

Nonneutral plasma consists of large number of electrons of order of mag-
nitude 1020. Simulation of so complex system is impossible if one would like
to study each particle separately. Instead of physical particles, numerical
superparticles are simulated which are collections of physical neighbouring
particles that experience similar forces and their time evolution is also sim-
ilar. Charge of superparticles is taken such that total charge with respect
to original system is conserved. Mass of superparticles is chosen in the way
that ratio between charge and mass remains the same as for electron. Mass
and charge of superparticles is presented in the following equations:

qSIM =
en0V

NSIM

mSIM =
qSIMme

e
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mSIM , qSIM are mass and charge of superparticles, e is the elementary charge,
V is volume of the space occupied by electrons, NSIM is the number of
superparticles.

Inserting renormalised quantities to equation (1) yields:

d~u

dt
=

q

m
[ ~E(x, t) +

~u× ~B(x)

γ
]

uN
tN

d~u
′

dt′
=

qSIM
mSIM

[EN ~E
′(x, t) + uNBN

~u′ × ~B′(x)

γ
]

d~u
′

dt′
=
ωce
ωpe

[ ~E ′(x, t) + ~β × ~B′(x)]

where ~β = ~v
c
. All primes quantities (for example v

′
) are quantities after

normalisation. ωce = eBmax

me
is the electron cyclotronic frequency at the max-

imum of magnitude of magnetic field and is constant. The same process for
equation (2) yields:

d~x

dt
=
~u

γ

rN
tN

d~x′

dt′
= vN

~u′

γ

d~x′

dt′
= ~β

From the equation (3) one get:

∇2φ = − ρ
ε0

ρ = −
Np∑
p=1

qpδ(r − rp(t))δ(z − zp(t))
2πr

∇2φ
′

= −ωpe
ωce

V
′

NSIM

NSIM∑
p=1

δ(r
′ − r′p(t

′
))δ(z

′ − z′p(t
′
))

2πr′

So the final set of equations that will be solved on the machine have the
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following form:

d~u
′

dt′
= ωce

ωpe
[ ~E ′(x, t) + ~β × ~B′(x)] (4)

d~x′

dt′
= ~β (5)

∇2φ
′
= −ωpe

ωce

V
′

NSIM

∑NSIM

p=1

δ(r
′−r′p(t

′
))δ(z

′−z′p(t
′
))

2πr′
(6)

2 Numerical technique

Full set of normalised equations consists of three equations (4),(5) and (6).
Each one of them have to be solved with appropriate numerical method
described in the following sections.

2.1 Poisson equation

In order to solve Poisson equation (6) finite elements method (FEM) was
applied. In FEM one introduces discretization mesh and B-spline basis func-
tions that are defined as piecewise polynomials with finite support on con-
sidered domain. One has to also specify degree of polynomials. Examples of
1D linear and cubic b-splines are presented on the figure (4). According to
the figure (3), Poisson equation has to be solved in two dimensional domain
r, z. It requires introduction of 2D B-splines ψ(r, z) that are defined through
1D B-splines λ(r), φ(z) as their product: ψij(r, z) = λi(r) ∗ φj(z). Example
of b-spline on 2D domain is presented on the figure (5)

FEM converts original equation (6) into its weak form. In the first step
both sides of equation (6) are multiplied by arbitrary test function ψi,j(r, z)
and integrated over all space

∫
dV = 2π

∫ ∫
rdrdz. In the following compu-

tation prime notation for normalized quantities was omitted for simplicity.
The weak form of Poisson equation is following:

∫ ∫
~∇φ~∇ψi,j(r, z)rdrdz −

∫
S

ψi,j(r, z)(~n · ~∇)φdS =
1

2π

ωpe
ωce

V

NSIM

NSIM∑
p=1

ψi,j(rp(t), zp(t))

~n stands for vector normal to surface S of integration domain. However,
the second term on the left hand side vanishes due to the natural bound-
ary conditions imposed for the electrostatic problem: (~n · ~∇)φ = 0. This
assumption results in the following weak form of equation (6):
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Figure 4: 1D b-spline examples

Figure 5: 2D b-spline example

∫ ∫
~∇φ~∇ψi,jrdrdz =

1

2π

ωpe
ωce

V

NSIM

NSIM∑
p=1

ψi,j(rp(t), zp(t)) (7)

In order to solve equation (7) numerically it has to be turned into algebraic
form. This is done by expansion of potential into series of basis B-splines
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functions: φ =
∑Nr+p

i′
∑Nz+p

j′
φi′ ,j′ (t)ψi′ ,j′ (r, z), where Nr + p and Nz + p

are numbers of b-splines in radial and z direction respectively. For example,
number of b-splines in z direction is given by number of intervals Nz and
order of FEM p. Inserting this form of potential into equation (7) yields:

∑
i′ ,j′

φi′ ,j′ (t)

∫ ∫
~∇ψi′ ,j′ ~∇ψi,jrdrdz =

ωpe
2πωce

V

NSIM

NSIM∑
p=1

ψi,j(rp(t), zp(t)) (8)

Set of equations analogous to equation (8) produced by multiplication
of equation (6) by various test functions ψi,j(r, z) lead to complex algebraic
problem. Mainly, four dimensional arrays are involved which inversion, is
very difficult to do. However, those difficulties can be avoided by different
numbering of B-splines functions that is presented on the figure (6). Clearly,
two indices numbering i, j is replaced by single indice µ such that ψi,j(r, z)→
ψµ(r, z) and µ = (j − 1) ∗ (Nz + p) + i where Nz + p is number of b-splines
in z direction. Application of new ordering of basis functions yields standard
matrix equation (9).

Figure 6: Numbering of basis functions
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A~φ(t) = ~Q(t) (9)

Ai,j =

∫ ∫
~∇ψi~∇ψj(r, z)rdrdz

Qi(t) =
1

2π

ωpe
ωce

V

NSIM

NSIM∑
p=1

ψi(rp(t), zp(t))

Matrix A is square matrix of dimension equal to number of basis func-
tions. Vector ~φ(t) = [φ1(t) · · ·φN(t)] consists of coefficient in potential ex-
pansion φ =

∑
i φi(t)ψi(r, z). At the end, Dirichlet boundary conditions are

imposed by modification of matrix A and vector ~Q(t) from equation (9) in
standard manner. Clearly, the first and the last Nz rows of set of equations
(6) are substituted in the way presented in the equation (10).



1 0
. . .

0 1
. . .

1 0
. . .

0 1





φ1(t)
...

φNz(t)
...

φN−Nz+1(t)
...

φN(t)


=



φ1
...
φ1
...
φ2
...
φ2


(10)

2.2 Momentum equation

2.2.1 Borris method

Equations (4) and (5) have to be solved separately for each particle. In
the following computations leapfrog scheme was applied which is presented
schematically on the figure (7). In this method, position of the particle in the
future xn+1 is calculated from the present position xn and its velocity in be-
tween vn+ 1

2
. Analogously, velocity in the future vn+ 1

2
is derived from present

velocity vn− 1
2

and acceleration which depend on the particles positions xn.
So the scheme relies on alternating advancing of positions and velocities.

Then, equations of motion are integrated in agreement with [1]:
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Figure 7: Leapfrog scheme

~un+ 1
2
− ~un− 1

2

∆t
=

ωce
ωpe

[ ~E(xn, t) +
~un+ 1

2
+ ~un− 1

2

2γn
× ~B(xn)] (11)

~xn+1 − ~xn
∆t

=
~un+ 1

2

γn+ 1
2

(12)

Let’s assume the positions of particles xn at time tn and particles velocities
vn− 1

2
at time tn− 1

2
are known. Then, one can calculate electric field from

particles positions from equation (9) to advance velocity in time. Updated
velocities are used to move particles to new positions which define new electric
field and so on. So, the process may be continued as long as it is necessary.

In order to solve equation (11) Borris method [1] was used. The method
substitutes original velocities ~un+ 1

2
and ~un− 1

2
by:

~un− 1
2

= ~u− − ωce
ωpe

~E(xn, t)∆t

2
(13)

~un+ 1
2

= ~u+ +
ωce
ωpe

~E(xn, t)∆t

2
(14)

Inserting new velocities to equation (11) yields:

~u+ − ~u−

∆t
=
ωce
ωpe

(
~u+ + ~u−

2γn
)× ~B(xn) (15)

Equation (15) is pure rotation around electric field line of new velocities.
Summing up, Borris method consists of three consecutive steps in integration
of momentum equation:
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• Addition of half of electric pulse ωce

ωpe

~E(xn,t)∆t
2

to initial velocity ~un− 1
2

in

order to calculate ~u− and update of γn− 1
2

to γn =
√

1 + (u
−

c
)2.

• Rotation around magnetic field yields ~u+. Note that γn remains con-
stant during the rotation, as the magnetic field does not work.

• Addition of second half of eletric pulse ωce

ωpe

~E(xn,t)∆t
2

to ~u+ in order to

get ~un+ 1
2
.

The last remaining issue is the way how rotation is performed. According
to [1], it is convenient to introduce a vector ~u

′
which is perpendicular to both

magnetic field ~B and velocity increment ~u+ − ~u−:

~u
′
= ~u− + ~u− × ~t (16)

Where ~t = ωce

ωpe

~B∆t
2γn

. Finally, ~u+ − ~u− is parallel to ~u− × ~B, so

~u+ = ~u− + ~u
′ × ~s (17)

where ~s is parallel to ~B and its magnitude is determined by the requirement
|~u−|2 = |~u+|2:

~s =
2~t

1 + t2
(18)

The geometry of the problem is schematically presented on the figure (8).

2.2.2 Details of calculations

Equations derived in the previous section are given in correct form from
mathematical point of view. However, in order to implement considered
equations in programming language one has to derive analogous formulas for
each one of three components. Momentum equations are solved in cylindrical
coordinates in the way decribed in this section.

It is assumed that initial positions of particles xn and initial velocities
vn− 1

2
are given. So that, electric field can be calculated by solving Poisson

equation (9). During acceleration, particles remain at the same positions
and then they are moved by updated velocity. So, reference frame does not
change at the first step where only particles velocities change.
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Figure 8: Rotation around magnetic field

First of all, half of electric pulse is added to initial velocity vn− 1
2

in order to

calculate ~u− from equation (13). In the following computations the notation
τ = ωce∆t

2ωpe
is chosen for clarity:

~u− = ~un− 1
2

+ τ ~E(xn, t) u−r
u−θ
u−z

 =

 un− 1
2
,r + τEr(xn, t)

un− 1
2
,θ

un− 1
2
,z + τEz(xn, t)

 (19)

Subscripts r, θ, z denote respective components of considered values in cylin-
drical coordinates. In equation (19), it was taken into account that one
component of electrical field Eθ is equal to zero due to the symmetry. The
same assumption is done on the external magnetic field configuration such
that ~B(xn) = [Br(xn) Bz(xn) 0]. Then, γn is recalculated in the following

way: γn =
√

1 + (u
−

c
)2

After the first half of the acceleration due to the electric field, rotation

around magnetic field is performed. At first, it is convenient to calculate ~u′
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in the way demonstrated in the equation (16):

~u
′

= ~u− + ~u− × ~t u
′
r

u
′

θ

u
′
z

 =

 u−r + τ
γn
u−θ Bz(xn)

u−θ + τ
γn

(u−z Br(xn)− u−r Bz(xn))

u−z − τ
γn
u−θ Br(xn)

 (20)

Following identities between units vectors ~er, ~ez, ~eθ were used in the cal-
culations:

~er × ~ez = −~eθ
~eθ × ~ez = ~er

~er × ~eθ = ~ez

Then, results of equations (19) and (20) are used in order to calculate ~u+.
According to equation (17):

~u+ = ~u− + ~u
′ × ~s u+

r

u+
θ

u+
z

 =

 u−r + Ω
γn
u
′

θBz(xn)

u−θ + Ω
γn

(u
′
zBr(xn)− u′rBz(xn))

u−z − Ω
γn
u
′

θBr(xn)

 (21)

Where t2 = ( τ
γn

)2| ~B(xn)|2 and Ω = 2τ
1+t2

. In the last step, second half of

electric pulse is added to ~u+ calculated in equation (21) in the same way as
it was done in equation (19):

~un+ 1
2

= u+ + τ ~E(xn, t) un+ 1
2
,r

un+ 1
2
,z

un+ 1
2
,θ

 =

 u+
r + τEr(xn, t)
u+
z + τEz(xn, t)

u+
θ

 (22)

When velocity vn+ 1
2

is calculated, one can advance positions of particles
from xn to xn+1. However, some difficulties arise from the fact that cylindrical
coordinates are used and unit vectors are not fixed at time but move together
with the particle.
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In Cartesian coordinates solution of equation (12) leads to:

xn+1 = xn +
un+ 1

2
,x

γn+ 1
2

∆t (23)

yn+1 = yn +
un+ 1

2
,y

γn+ 1
2

∆t (24)

zn+1 = zn +
un+ 1

2
,z

γn+ 1
2

∆t (25)

Where x, y, z denote respective coordinates in the Cartesian reference frame.
Let the z-axis of cylindrical reference frame overlap the z-axis of Cartesian
reference frame. Then, z component of total position is calculated in the
same way in both reference frames by equation (25). But remaining two
components at the plane perpendicular to z-axis are differently calculated in
cylindrical and Cartesian reference frames.

Assuming that initial radius and angle (rn and θn) are given, one intro-
duces a reference frame x

′
y
′

such that x
′

axis point along radial direction
and y

′
axis point in θ direction. Then, particles are moving in x

′
y
′

reference
frame in the way described in equations (23) and (24):

xn+1 = rn +
un+ 1

2
,r

γn+ 1
2

∆t (26)

yn+1 =
un+ 1

2
,θ

γn+ 1
2

∆t (27)

Then, coordinates of advanced particles are converted to new radius rn+1

and angle θn+1 at updated cylindrical reference frame:

rn+1 =
√
x2
n+1 + y2

n+1 (28)

θn+1 = θn + α (29)

α = arctan
yn+1

xn+1

(30)

The geometrical interpretation of theperformed calculatiosn when parti-
cles are moving are presented on the figure (9).
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Figure 9: Plane perpendicular to z-axis [1]

According to the figure (9), advancing the particles involve rotation of
the reference frame. So, it is required to compute components of velocity vn
in new reference frame through rotation by angle α:[

vn+ 1
2
,r

vn+ 1
2
,θ

]
x′′y′′

=

[
cosα sinα
− sinα cosα

][
vn+ 1

2
,r

vn+ 1
2
,θ

]
x′y′

(31)

Where sinα = yn+1

rn+1
and cosα = xn+1

rn+1
.

3 Implementation

3.1 Initialization

First of all it is necessary to describe initial positions and velocities of elec-
trons. The most intuitive initial state is random distribution along both z
and r direction presented schematically on the figure (12). But this configu-
ration does not fill the space uniformly like it would be expected. There are
empty parts of the space and some with high concentration of particles.

Moreover, according to [1] using usual random initialization tends to pro-
duce computed nonneutral plasmas with undesired fluctuation levels which
are larger than fluctuations observed in laboratory. This may prevent us
from observing low level physics. The solution is to load initial phase space
as smoothly as possible but still resembling random configuration of particles.
The method is called quite start. Particles are distributed uniformly with re-

spect to the first coordinate such that: zi =
i+ 1

2

N
Lz, where i = 0, ..., N − 1, N

is total number of particles and Lz is the length of the cylinder. The second
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Figure 10: Initial random positions

coordinate is loaded as a Hammerslay sequence that consists of bit reversed
numbers. The sequence is constructed by reversing the base-n representation
of the sequence of natural numbers. Two examples of base 2 and 3 Hammer-
slay sequences are given in the table (1). Resulting configuration of initial
positions of particles with a base-2 Hammerslay sequence is presented on the
figure (11).

Figure 11: Initial position of particles with a base-2 Hammerslay sequence

Particles velocities can be initialised in several ways. For electron plasmas
with relatively low temperature, cold plasma approximation can be applied.
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Natural Base-2 Base-2 Hammerslay Base-3 Base-3 Hammerslay
number repr. sequence repr. sequence

0 0 0 0 0
1 1 1 ∗ 1

2
= 1

2
1 1 ∗ 1

3
= 1

3

2 10 1 ∗ 1
4

+ 0 ∗ 1
2

= 1
4

2 2 ∗ 1
3

= 2
3

3 11 1 ∗ 1
4

+ 1 ∗ 1
2

= 3
4

10 1 ∗ 1
9

+ 0 ∗ 1
3

= 1
9

4 100 1 ∗ 1
8

+ 0 ∗ 1
4

+ 0 ∗ 1
2

= 1
8

11 1 ∗ 1
9

+ 1 ∗ 1
3

= 4
9

5 101 1 ∗ 1
8

+ 0 ∗ 1
4

+ 1 ∗ 1
2

= 5
8

12 1 ∗ 1
9

+ 2 ∗ 1
3

= 7
9

6 110 1 ∗ 1
8

+ 1 ∗ 1
4

+ 0 ∗ 1
2

= 3
8

20 2 ∗ 1
9

+ 0 ∗ 1
3

= 2
9

7 111 1 ∗ 1
8

+ 1 ∗ 1
4

+ 1 ∗ 1
2

= 7
8

21 2 ∗ 1
9

+ 1 ∗ 1
3

= 5
9

Table 1: Hammerslay sequence examples

It simply means, that initial velocities of electrons are equal to zero.
At higher temperatures, gaussian distribution of velocities is a better

choice. In order to reproduce gaussian distribution function, cumulative
distribution function is introduced:

F (v) =

∫ v
0

exp− v2

2v2t
dv∫∞

0
exp− v2

2v2t
dv

(32)

Function F (v) ranges between 0 and 1. There is a well defined velocity
for each number from 0 to 1. So, by a good choice of set of numbers it
is possible to correctly initialize particles velocities. Again, a random set
of numbers will lead to a different distribution. However, it turns out that
’quite Maxwellian’ with set of numbers defined by Hammerslay sequence give
desired result. Histogram of velocities in 1D is shown on the figure (12).

3.2 Poisson equation solver

According to the equation (9), positions of the particles are involved in deriva-
tion of potential generated by themselves. Right hand side of the equation is
called charge assignment and describe charge deposited on the grid points.
It has one important property that can be used as a test for the code:

∑
i

Qi(t) =
1

2π

ωpe
ωce

V

NSIM

NSIM∑
p=1

∑
i

ψi(rp(t), zp(t)) =
1

2π

ωpe
ωce

V (33)
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Figure 12: Histogram of velocities in 1D

So, the sum of elements of right hand side vector should be fully deter-
mined by number of superparticles and constant factor 1

2π

ωpe

ωce
V . The differ-

ence between sum of components of numerically calculated right hand side
and equation (33) was measured for the range of number of superparticles
between 10 and 107 and its result is presented on the figure (13).

Figure 13: Error of charge assignment
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The error is of the order of magnitude of machine precision which is
equal to 10−17. Once it was checked that right hand side of equation (9) is
assembled correctly, it is necessary to perform tests on entire poisson equation
solver. The tests are done for cases where the potential can be calculated
analitycally.

3.2.1 Case of empty space between metallic walls

In the first test it is assumed that there is no particles in the space between
metallic walls with fixed potential (figure (2)). The geometry corresponds to
a simple cylindrical capacitor schematically presented on the figure (14).

Figure 14: Cross-section at plane perpendicular to z-axis of cylindrical ca-
pacitor

Parameters used in the calculations are shown in the table (2)

a b Lz V(a) V(b) n0

0.05 m 0.06 m 0.07 m 0 V 30 000 V 0m−3

Table 2: Parameters

The considered system is highly symmetric. First of all there is a sym-
metry with respect to the angle. Moreover, if length of the cylinder is large
enough it can be assumed that there is also symmetry along the main axis.
So, all quantities are only radial dependent.
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Analytical solution for potential is derived from Laplace equation with
appropriate boundary conditions. 1D problem to be solved has the following
form:

1

r

d

dr
r
d

dr
φ = 0

φ|r=a = φ1

φ|r=b = φ2

(34)

The problem is a second order ordinary differential equation with two
boundary conditions. So, a unique solution exists and is derived in the fol-
lowing way:

1

r

d

dr
r
d

dr
φ = 0

d

dr
r
d

dr
φ = 0

d

dr
φ =

C1

r∫ φ(r)

φ1

dφ =

∫ r

a

C1

r
dr

φ(r) = φ1 + C1 ln(
r

a
)

In order to calculate the integration constant C1 second boundary condi-
tion is applied:

φ(r = b) = φ1 + C1ln(
b

a
) = 0→ C1 =

φ2 − φ1

ln( b
a
)

So, the final solution has the form presented in the equation (35).

φ(r) = φ1 +
φ2 − φ1

ln( b
a
)
ln(

r

a
) (35)

Derived analytical solution is compared with the one obtained numerically
on the figure (15).
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Figure 15: Radial dependence of potential

So, the numerical solution φnum matches perfectly the analitical φanal one
in this simple example. However, the error analysis was performed in order
to check if error converge to zero if disctretisation becomes more and more
accurate. First of all, profiles of differences between numerical and analytical
solutions were studied for different numbers of intervals for discretization
(figure(16)).

According to the figure (16), it is evident that difference between two
solutions becomes smaller with increasing number of intevals nr. It still has to
be investigated if the error between two solutions tends to zero when number
of cells tends to infinity. First of all, error was defined as an infinite norm
that can be approximated as a maximal difference between two solutions in
grid points:

err(φanal, φnum) = ‖φanal(r)− φnum(r)‖∞ ≈ max
i=1...nr+1

|φanal(ri)− φnum(ri)|

Convergence of error was studied for the first up to fourth order of finite
elements method. Results are presented on figure (17).

Error between numerical and analytical solution tend to zero indepen-
dently on the order of finite elements method. Moreover, it was proven that
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Figure 16: Difference between analytical and numerical solutions

error behave like (1/nr)
p+1 where p is the order of the finite elements method.

Exception is second order finite elements method where convergence is one
order higher than expected. This discrepancy may come from the estimation
of error where the norm was taken only at the grid points. But as long as the
numerical method converge to analytical one it can be assumed that solver
has been implemented properly.

Based on this example one can conclude that the left hand side of equation
(9) is constructed correctly because the right hand side does not play a role
in this case.

Now, when both right and left side of poisson equation solver was tested
separately, one can add complexity into the setup by adding a electron
plasma.
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Figure 17: Difference between analytical and numerical solutions

3.2.2 Thin layer of electron plasma

The next example introduces some complexity with respect to the previous
section. Very thin cylindrical layer of electron plasma is considered inside a
space limited by two metallic walls. It is assumed that all electrons form a
homogeneous layer compressed to one interval of discretisation scheme. So,
increasing the number of intervals will make the layer thinner and thinner.

The system remains symmetric with respect to z and θ for the same
reason as in the previous section. Problem to be solved is described by
Poisson equation with appropriate boundary conditions:
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Figure 18: Cross-section at plane perpendicular to z-axis of cylindrical ca-
pacitor

1

r

d

dr
r
d

dr
φ = − ρ

ε0
(36)

ρ =

{
ρ0 if Rb1 < r < Rb2

0 otherwise
(37)

φ|r=a = φ1

φ|r=b = φ2

Where ρ is the electron plasma density which is constant at one middle
interval and is zero otherwise. Boundary values of potential and geometrical
parameters were taken from table (2). Analytical solution of the problem
with finite width of nonneutral plasma was derived by solving equation (36)
and compared with numerical one on the figure (19).

Again, both solutions match each other. The difference between them
decreases when the number of points for the discretization is increased, as
can be seen on figure (20). Error analysis was performed for the first up to
fourth order finite elements method and is shown on the figure (21). Or-
der of convergence for the first order FEM is quadratic like it is expected.
However, order of convergence for higher order FEM is undersetimated by
1,2,4 for second, third and fourth order FEM respectively. The reason for
this discrepancy may come from the fact that at higher order finite elements
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Figure 19: Radial dependence of potential

some charges are assigned to grid points that are not the limits of interval at
which particles are placed.
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Figure 20: Difference between analytical and numerical solutions for FEM of
the first order

Figure 21: Error of FEM of the first order
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4 Particles mover

4.1 Magnetic field topology

So far, only the Poisson equation, from the full set of equations (1), (2) and
(3) was tested. Now it is known that for a given distribution of charge the
self-consistent potential is calculated correctly. However, particles are pushed
by both electric and magnetic fields. The magnetic field is assumed to be
given externally by surrounding coils in the analytic form [2]. The mirror
magnetic potential is described by the following formula:

Aextθ =
B0

2
[r − L

π

R− 1

R + 1
I1(

2πr

L
) cos(

2πz

L
)] (38)

So only one component of vectorial potential is not vanishing. In equation
(38), I1(x) is the modified Bessel function of the first order of the first kind.
L is the distance between magnetic mirrors (located at z = ±L

2
). B0 is the

value of the axial magnetic field on the axis at z = ±L
4
. R is the mirror ratio

defined as R = Bmax

Bmin
=

B(r=0,z=±L
2

)

B(r=0,z=0)
. So, by manipulating two parameters B0

and R one can modify the magnitude and the shape of magnetic field lines.
Resulting magnetic field has two nonvanishing components:

Bext
r (r, z) = − ∂

∂z
Aextθ (r, z) = −B0

R− 1

R + 1
I1(

2πr

L
) sin(

2πz

L
) (39)

Bext
z (r, z) =

1

r

∂

∂r
[rAextθ (r, z)] = B0[1− R− 1

R + 1
I0(

2πr

L
) cos(

2πz

L
)] (40)

Magnetic field flux through the circle of radius r is derived from vectorial
potential:

ΦB =

∫
S

~B · d~S =

∫
δS

~A · d~l =

∫ 2π

0

Aθrdθ = 2πrAθ (41)

Magnetic flux from equation (41) is drawn on the figure (22). Magnetic
field lines are isolines of magnetic flux from figure (22). Magnetic field lines
are presented on figure (23). Parameters specific to the magnetic field are
presented in table (3). As the guiding center of particles follow magnetic
field lines, one should avoid the intersections of magnetic field lines at which
particles are initialized with metallic walls. In order to avoid particles hitting
the walls one has to also take into account gyromotion of partcles. So, all
the magnetic field lines which are followed by particles should not be closer
than a distance of Larmor radius from metallic walls.
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Figure 22: Magnetic flux

Table 3: Magnetic field parameters

B0 R L
0.2T 1.001 0.05m

4.2 Mirror effect

The magnetic field configuration presented in the previous section is an ex-
ample of magnetic mirror. In a magnetic mirror, electromagnets are used
to produce increasing density of magnetic field lines at both ends of device
(figure (24)). Trapped particles experience repulsive force which push them
to the confinement area with low magnetic field. Confinement is efficient
only if particle do not belong to a loss cone, defined by the ratio between
their perpendicular and parallel velocities. The condition for particle to be
confined is expressed in the following way:

v⊥
v‖

>

√
Bmin

Bmax

(42)
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Figure 23: Magnetic field lines

So, the ratio between perpendicular and parallel velocity of particle must be
high enough to confine the particles. Two effects should be noticed while
studying single particle trajectory:

• Particle should follow the magnetic field line at which it is initialy
placed

• Particle with too slow gyromotion with respect to the movement along
field lines will not be trapped

For this example where single particle is considered, the potential is de-
termined externally by boundary conditions (no self-consistent component).
According to the table (4), there is no difference of potential between the
two metallic walls, so the particle experience only magnetic field. At first,
single particle trajectory was studied for the ratio v⊥

v‖
= 2 (v⊥ = 0.02c and

v‖ = 0.01c)and reflection from strong magnetic field area was expected. On
the other hand, the particle with dominant parallel velocity v⊥

v‖
= 1

2
and

(v⊥ = 0.005c and v‖ = 0.01c) should pass the area of high magnetig field.
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Figure 24: Magnetic mirror

The trajectories of those particles are presented on figure (25). According to
the figure (25) particles follow magnetic field lines as expected. Moreover,
the theoretical condition for magnetic confinement is verified. Numerical and
physical parameters used in the calculation of particle trajectories are shown
in the table (4). The dimensions of the cylinder remains the same and are
indicated in the table (2).

Table 4: Input parameters

Φ1 Φ2 B0 R dt nsteps QSIM

0V 0V 0.2T 1.003 10−12s 104 −1.55 · 10−17C
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Figure 25: Trajectory of particle with dominant perpendicular and parallel
velocity

4.3 Penning mechanism

In the previous example particles were confined only by the mirror magnetic
field configuration. However, there also exists a mechanism of trapping the
particles by appropriate configuration of both electric and magnetic field.
This mechanism is presented and experimentally studied by Pagonakis et
al. [3]. Penning trapping takes place if equipotential lines intersect magnetic
field lines. Expected particle motion is schematically presented on the figure
(1) where electrons are confined by magnetic potential well while positive
ions are thrown away from confinement area. However, it is sufficient to
either switch direction of electric field or to change the curvature of magnetic
field to confine ions and reject electrons. In the configuration of electric and
magnetic field considered for purposes of this work, there is a confinement
area for both species indicated by the arrows on the figure (26). In the case of
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single particle, there is no self-consistent potential. The test particle moves in
the external electric fields and external magnetic field. It means that charge
assignement from equation (9) is zero and Poisson equation takes form of

Laplace equation ~∇2φ = 0.

Figure 26: Equipotential and magnetic field lines

Trajectories of single particles positively and negatively charged were
studied on figure (27). For both cases guiding center follow magnetic field
lines and particles are confined at areas appropriate for the sign of the charge.
However, in the following studies purely electron plasma will be studied.
Moreover, Larmor radius is the same for both particles and particle rotate in
opposite directions like expected. Both particles were initialised at the same
position rp = 0.0.55m and zp = 0.016m and with zero velocity v⊥ = v‖ = 0.
Numerical and physical parameters used in the calculation of particle trajec-
tories are shown in the table (5). Dimensions of cylinder remains the same
and are indicated in the table (2).
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Table 5: Input parameters

Φ1 Φ2 B0 R dt nsteps QSIM

0V 30kV 0.2T 1.001 10−12s 104 ±1.55 · 10−17C

Figure 27: Positively and negatively charged particles trajectories
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5 Electron plasma simulation

5.1 Electron plasma with ωce

ωpe
= 8.81

In the previous section it was found that single particle is trapped by the
specific configuration of electric and magnetic field. The same effect is ex-
pected for simulation of more complex system with a large number of parti-
cles. Namely, one should notice that most of the particles are trapped at the
confinement area while only a few of them can be found elsewhere. In this
section initially cold electron plasma with zero velocity v⊥ = v‖ = 0 is sim-
ulated. Initial positions of particles are specified by Hammerslay sequence
(look at the figure (11)) between two radii Rb1 and Rb2 given in the table
(6). Physical and numerical parameters used in the simulation are presented
in the tables (6) and (7). Dimensions of cylinder remains the same and are
indicated in the table (2).

Table 6: Physical parameters

Φ1 Φ2 B0 R n0 Rb1 Rb2

0V 30kV 0.2T 1.001 5 ∗ 1015m−3 0.051m 0.053m

Table 7: Numerical parameters

dt nsteps NSIM nz nr
10−11s 104 104 50 50

According to the normalised equations (4), (5) and (6), the nonneutral

plasma frequency ωpe =
√

n0e2

meε0
and the cyclotronic frequency ωce = qSIMB0

mSIM

are physical quantities defined by input parameters from table (6). For con-
sidered magnetic field and density, the frequencies ratio is ωce

ωpe
= 8.81. It

means that electron plasma is at the regime at which cyclotronic motion
dominates over the collective effects and the nonneutral plasma evolution
can be approximately considered as a collection of single particles. The sec-
ond important parameter derived from the input parameters is the number
of steps per one cycle of cyclotronic motion. For the considered case this
parameter is Ncyc = Tc

dt
= 18. The initial and final particles distribution is

shown on the histograms on the figures (28) and (29). Initially, electrons
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are distributed uniformly. According to the figure (28), particles are trapped
in the middle of the domain but appropriate configuration of fields also oc-
curs at the edges at z = ±L

2
where cyclic boundary conditions were applied.

It means that every particle leaving the domain at one of the boundaries
z = ±L

2
is put back on the opposite side with unchanged velocity. This con-

straint is not necessary in radial direction because particles are confined by
the magnetic field configuration.

Figure 28: Initial particles positions

The density of charge in the confinement areas results in the small de-
formation of equipotential lines. The effect of charge displacement on the
configuration of electromagnetic field is presented on the figure (30). The
effect of charge density on equipotential lines is small because ωce

ωpe
= 8.81.

Potential, kinetic and total energy for electron plasma are described by
the formulas from equations (43), (44) and (45). They are used as diagnos-
tics to check if simulation is working correctly. Kinetic energy of nonneutral
plasma is calculated as a sum of kinetic energies of single particles. How-
ever, potential energy can be simply calculated as a dot product of charge
assignement and potential vector from equation (9).
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Figure 29: Final particles positions

εp =
1

2

∫
V

ρφdV =
1

2

∑
i

Qiφi (43)

εk =
1

2

∑
p

mpv
2
p (44)

εt = εp + εk (45)

Variation of potential, kinetic and total energy for ωcedt = 0.35 is pre-
sented on the figure (31).

According to the figure (31), the total energy converge to a certain value
which is different compared to the initial total energy which is 2.25 · 104J .
However, by decreasing the timestep one can reduce the error between final
and initial energy. The effect of timestep on this error is presented on the
figure (32).
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Figure 30: Equipotential and magnetic field lines

Figure 31: Potential, kinetic and total energy variation
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Figure 32: Error of energy conservation

5.2 Electron plasma with ωce

ωpe
= 3.11

Second example of electron plasma studied in this work is the one higher
density with respect to the previous example, thus a lower ratio between the
cyclotronic frequency and the electron plasma frequency ωce

ωpe
= 3.11. Physical

and numerical parameters used in the simulation are presented in the tables
(8) and (9). Initial and final distribution of particles are presented on the

Table 8: Physical parameters

Φ1 Φ2 B0 R n0 Rb1 Rb2

0V 30kV 0.2T 1.001 4 ∗ 1016m−3 0.054m 0.055m

Table 9: Numerical parameters

dt nsteps NSIM nz nr
8 ∗ 10−12s 104 104 50 50

histograms (33) and (34). Particles are still confined in the expected regions.
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Moreover, due to the higher density with respect to the previous example
the deformation of equipotential lines become significant like indicated on
the figure (35). The asymmetry in the equipotential lines come from a small
asymmetry in final particles distribution. One can conclude that electron
plasma is not in the equilibrium. The equilibrium is not reached even for
longer simulation times.

The energy conservation was also studied for this case. The surprising
result is that the total energy is not conserved due to a constant growth
of kinetic energy. Kinetic, potential and total energies are presented on
figure(36). The total energy growth is shown on figure (37). The system is
isolated and changes in kinetic energy should be compensated by changes in
potential energy. It is possible that this unexpected result come from bad
choice of numerical parameters. The best way to solve this problem would
be to make a step back and test the code (convergence tests) on simple
examples with respect to each parameter separately. Especially, convergence
of the particle mover using Borris method should be tested. The second
possible reason is that the energy is measured in the wrong way. From figure
(36), one can notice that while kinetic energy is growing the potential energy
is slightly decreasing. There may be a normalisation issue which can not be
solved due to the lack of time.
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Figure 33: Initial particles positions

Figure 34: Final particles positions
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Figure 35: Equipotential and magnetic field lines



45

0 500 1000 1500 2000 2500 3000

ce
t

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
n

e
rg

y
 [

J
]

10-3

Kinetic energy

Potential energy

Total energy

Figure 36: Potential, kinetic and total energy variation

6 Conclusions

In this work, the model for nonneutral plasma was built. The geometry of
the magnetron electron gun (MIG) was approximated by cylinder. Electro-
static particle in cell (PIC) model was applied for electron motion simulation
which consists of two equations of motion (1), (2) and poisson equation (3).
Normalised form of those equations was derived and implemented. Poisson
equation was solved with finite elements method (FEM) and tested on two
examples with known analitical solutions. In particle pusher implementation
Borris method was used what allow to split electron motion to acceleration
due to electric field and rotation due to magnetic field. Single particle tests
were done for the mirror magnetic field configuration and penning trapping.
For both cases electrons were moving in expected way. Finally, the valid-
ity of the code was tested on the complex system of electron plasma with
ωce

ωpe
= 8.81. Electrons were confined by Penning mechanism and reached equi-

librium indicated by energy conservation. Moreover, it was found that the
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Figure 37: Error of energy conservation

difference between final and initial energy is decreasing when time increment
is getting smaller. On the other hand, the electron plasma with ωce

ωpe
= 8.81

did not conserved a total energy even though it was well confined by Penning
mechanism. This surprising result need to be studied in the future. First
of all, one need to find a reason why this growth occurs which can be bad
choice of numerical parameters or wrong way of energy measurements. As
soon as the code will be checked one can start to develope a code in terms
of geometry of the system or more complex nonneutral plasma systems in-
cluding electron beam and secondary electrons coming from ionization. A
future goal would be to study in more details the machanisms of electron
trapping and possible instabilities that could leat to sudden loss of electron
confinement.
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