% Physical constants vlight=299792458; qe=1.60217662E-19; me=9.109383E-31; eps_0=8.85418781762E-12; kb=1.38064852E-23; H0=200000*1.6e-19; B0=0.21; plasmadim=[0, 0.16, 0.00749, 0.0075]; n0=-5e14; nplasma=100000 %n0=-4e16 qsim=pi*(plasmadim(2)-plasmadim(1))*(plasmadim(4)^2-plasmadim(3)^2)*n0*qe/nplasma msim=abs(qsim)/qe*me omegace=qe*B0/me; omegape=sqrt(qe*qe*abs(n0)/eps_0/me); r0=sqrt(2*H0/me/omegace^2) vperp=omegace*r0/vlight H0=200000*1.6e-19 Rcurv=1.5 width=0.64 deltar=sqrt((Rcurv-1)/(Rcurv+1)) rb=r0*(1+deltar)/(1-(Rcurv-1)/(Rcurv+1)) ra=r0*(1-deltar)/(1-(Rcurv-1)/(Rcurv+1)) v=[0.5*omegace*r0^2/ra,0.5*omegace*r0^2/rb]/vlight %% % Computation of the axial trapped resonance frequency r=0.05:0.001:0.06; z=-0.035:0.001:0.035; B0=0.2; Er=-30000; L=0.05; % Br=-B0*(Rcurv-1)/(Rcurv+1)*besseli(1,2*pi*r/L)*sin(2*pi*z/L) % Bz=B0*(1-(Rcurv-1)/(Rcurv+1)*besseli(0,2*pi*r/L)*cos(2*pi*z/L)) % B=sqrt(Br.^2+Bz.^2)