Pn=1e-8;%mbar kb=1.38064852e-23; T=300; estimneutraldensity=Pn*100/(kb*T); nb=estimneutraldensity; qe=1.60217662E-19; me=9.109383E-31; eps_0=8.85418781762e-12; vlight=299792458; Ee=[10]; %eV gridsize1=ceil(sqrt(length(Ee))); gridsize2=ceil(length(Ee)/gridsize1); fighandle=figure; for i=1:length(Ee) subplot(gridsize2,gridsize1,i) ve=sqrt(Ee(i)*qe/me); %m/s gamma=1/(1-ve^2/vlight^2); ne=5*logspace(13,17,3000); B0=0.21; sigion=sigmabeb(15.58,54.91,2,1,Ee(i)); sigion=sigmabeb(41.72,71.13,2,1,Ee(i))+sigion; sigion=sigmabeb(21,63.18,2,1,Ee(i))+sigion; sigion=sigmabeb(17.07,44.30,4,1,Ee(i))+sigion; Coulomblog=log(sqrt(eps_0*Ee(i)/qe*ne)/qe^2*2*pi*eps_0*me*ve^2); ne_0=1; tauion=1./(nb*sigion*ve); tauloss=tauion*log(ne/ne_0); taucycl=2*pi*me*gamma/qe/B0; taupe=2*pi*sqrt(eps_0*me*gamma/qe^2./ne); tauthermal=1./(ve*ne*qe^4.*Coulomblog./(gamma^2*me^2*ve^4*2*pi*eps_0^2)); ldw=1.5; loglog(ne,tauion*ones(size(ne)),'displayname','\tau_{ion}','linewidth',ldw) hold on loglog(ne,tauloss,'displayname','t_{accum}','linewidth',ldw) loglog(ne,tauthermal,'displayname','\tau_{thermal}','linewidth',ldw) loglog(ne,taucycl*ones(size(ne)),'displayname','\tau_{ce}','linewidth',ldw) loglog(ne,taupe,'displayname','\tau_{pe}','linewidth',ldw) legend('location','eastoutside') %title(sprintf('E_e=%#.3g eV',Te(i))) xlabel('n_e [m^{-3}]') ylabel('\tau [s]') grid on end sgtitle(sprintf('E_e=%3.2g [eV], P_n=%3.2g [mbar]',Ee(1),Pn)) %% Saves the given figure as a pdf and a .fig fighandle.PaperUnits='centimeters'; papsize=[12 10]; fighandle.PaperSize=papsize; name=sprintf('timescaleE%2.0eP%2.0embar',Ee(1),Pn); print(fighandle,name,'-dpdf','-fillpage') savefig(fighandle,name) % Te=500; % ve=sqrt(Te*qe/me); %m/s % gamma=1/(1-ve^2/vlight^2); % time=logspace(-5,1,500); % dens=exp(time/tauion); % Coulomblog=log(sqrt(eps_0*Te/qe*dens)/qe^2*2*pi*eps_0*me*ve^2); % tauthermal=1./(ve*dens*qe^4.*Coulomblog./(gamma^2*me^2*ve^4*2*pi*eps_0^2)); % figure % yyaxis left % loglog(time,dens) % yyaxis right % loglog(time,tauthermal) % Sigma BEB see (https://physics.nist.gov/PhysRefData/Ionization/intro.html) % B binding energy % U average kinetic energy % N electron occupation number % Q dipole constant % T incident energy function sig=sigmabeb(B,U,N,Q,T) t=T/B; %incident energy u=U/B; % Average kinetic energy % B: a0=0.52918e-10; R=13.6057; S=4*pi*a0^2*N*(R/B)^2; n=1; sig=S/(t+(u+1)/n)*(Q*log(t)*0.5*(1-t^-2)+(2-Q)*(1-t^-1-log(t)/(t+1))); end