git-demo

Nicolas Borboén nicolas.borboen@epfl.ch

2015-09-14

mailto:nicolas.borboen@epfl.ch

Contents

1 Git-demo project
Define your git public informations
Basics commandso L
Read thelog
Conflicts management L oL
Managing brancheso L oo
Cleaning up o o it e

Documentation and links

S O O Ut Ot Ot Ot xR W NN NN

Chapter 1
Git-demo project

The aim of this repo is to provide a simple tutorial about git usage. You will
need git' and a merge tool?.

Define your git public informations

1. Set you username

$ git config --global user.name "Your Name Comes Here"
g g 8

2. Set you email

$ git config --global user.email you@yourdomain.example.com

Basics commands

This section present all the “every day” git commands. How to clone a git
repository locally, add files, commit changes, push to repository and pull from
repository.

1. Create a projet on gitlab.epfl.ch / github.com or initialize a local project
with the command

$ git init

Hnformation about installing git on your system can be found here: https://git-
scm.com/download/
2Many merge tool are available but Meld is a good multi-plateforme candidate

http://meldmerge.org

2. Clone the project on your computer

$ git clone username®@host:/path/to/repository

$ git clone https://gitlab.epfl.ch/sti-it/git-demo.git
3. Edit the file foo.md

4. Commit your modification

$ git commit -m "My modifications details" foo.md

5. Create a new file

$ vim myTestFile.txt

6. Add the new file to git
$ git add myTestFile.txt

and commit it.

7. Check your modification
$ git status

8. Push your modification
$ git push
9. Browse to the repository page to see the modification
10. Others collaborators of the repository can now update their files to see
your changes with
$ git pull

Read the log

1. View all the logs
git log

2. View the log of a specified author
git log --author=bob

3. Test some logs option
git log --pretty=oneline
git log --graph --oneline --decorate --all
git log --name-status
git log --help
4. Note that you can use the following command to search for strings in any
version of your project:

$ git grep "hello"

Conflicts management

1. Reset changes you made to a file

$ git checkout -- <filename>

2. Set the tool you want to use to resolve conflict

$ git mergetool

3. Resets any changes to tracked files:
$ git reset --hard origin/master
Resets the index and working tree. Any changes to tracked files in the
working tree since are discarded.
4. If you want to be more delicate than the latest command, you can use:
$ git revert <commit>

Reverting has important advantages over resetting as it doesn’t change the
project history, which makes it a “safe” operation for commits that have
already been published to a shared repository.

Managing branches

1. Create a new branch

$ git branch myTest

2. List the branches of your project
$ git branch

myTest master® (<— current branch)

3. Change the branch with the command
$ git checkout myTest

4. Now edit the foo.md file and commit it, then change back on master branch
$ git checkout master
Check that the change you made is no longer visible, since it was made on
the myText branch and you’re back on the master branch.

5. Now you can edit files on the master branch, but at one point you may
want to bring back the changes made on myTest to master branch:
$ git merge myTest

If the changes don’t conflict, you’re done. If there are conflicts, markers
will be left in the problematic files showing the conflict.

6. Check the markers with the diff command:
$ git diff

7. Now edit the file to resolve the conflicts and commit the changes made to
the file. You can use the tool “gitk” to graphically see the resulting history.

$ gitk

8. As the changes made to the myTest branch are now merged, you can delete
this branch:

$ git branch -d myTest

Cleaning up

1. Remove branches
$ git branch
and

$ git branch -D <every branches but master>

2. Revert the changes made to foo.md and commit them

$ git reset fdOdec5 foo.md

Documentation and links

RTFM

e man git
e man 7 gittutorial
e man 7 gitworkflows

On the www

Official

¢ Documentation
 Books
e Cheat Sheets: EN - FR

http://git-scm.com/doc
http://git-scm.com/book/en/v2
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/fr/github-git-cheat-sheet.pdf

Good alternative documentation

e Roger Dudler
o Atlassian
e gitmagic

Courses

e GitHub
¢ CodeSchool
o Git Immersion

Documentation in French

e OpenClassRooms

¢ Polytechnique.fr

o gitmagic

¢ PutainDeCode

e Submodules vs Subtree

Facts

e Kernel SCM saga. . .
o Happiness is a warm SCM

http://rogerdudler.github.io/git-guide/
https://www.atlassian.com/git/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
https://training.github.com/
https://www.codeschool.com/courses/try-git/goto
http://gitimmersion.com/
http://openclassrooms.com/courses/gerez-vos-codes-source-avec-git
http://www.lmd.polytechnique.fr/~dkhvoros/teach/tutoriel-git.pdf
http://www-cs-students.stanford.edu/~blynn/gitmagic/intl/fr/
http://putaindecode.fr/posts/git/boutez-les-bugs-domptez-votre-historique/
http://www.git-attitude.fr/2014/12/31/git-submodules/
http://www.git-attitude.fr/2015/01/30/git-subtrees/
https://lkml.org/lkml/2005/4/6/121
http://torvalds-family.blogspot.ch/2009/06/happiness-is-warm-scm.html

	Git-demo project
	Define your git public informations
	Basics commands
	Read the log
	Conflicts management
	Managing branches
	Cleaning up
	Documentation and links
	RTFM
	On the www
	Courses
	Documentation in French

	Facts

