Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F100643636
gplot_cpu
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Feb 1, 10:58
Size
7 KB
Mime Type
text/x-python
Expires
Mon, Feb 3, 10:58 (2 d)
Engine
blob
Format
Raw Data
Handle
24005889
Attached To
rGTOOLS Gtools
gplot_cpu
View Options
#!/usr/bin/env python
'''
Extract and plot info contained in cpu.txt files
Yves Revaz
jeu avr 6 15:58:19 CEST 2006
'''
import Ptools as pt
import os, sys, string
from optparse import OptionParser
from Gtools import *
from Gtools import io
from optparse import OptionParser
def parse_options():
usage = "usage: %prog [options] file"
parser = OptionParser(usage=usage)
parser = pt.add_postscript_options(parser)
parser = pt.add_limits_options(parser)
parser = pt.add_log_options(parser)
parser = pt.add_cmd_options(parser)
parser.add_option("--mode",
action="store",
dest="mode",
type="string",
default = 'total',
help="mode : cpu, cpu/step",
metavar=" NAME")
parser.add_option("--legend",
action="store_true",
dest="legend",
default = False,
help="add a legend")
parser.add_option("-t",
action="store",
dest="time",
type="string",
default = 'hour',
help="time : day, hour, minute, second",
metavar=" TYPE")
(options, args) = parser.parse_args()
if len(args) == 0:
print "you must specify a filename"
sys.exit(0)
files = args
return files,options
#######################################
# MakePlot
#######################################
def MakePlot(dirs,opt):
# some inits
colors = pt.Colors()
linestyles = pt.LineStyles(n=len(files))
datas = []
# read files
for file in files:
linestyle = linestyles.get()
try:
vals = pt.io.read_ascii(file)
except:
Step,Time,CPUs,CPU_Total,CPU_Gravity,CPU_Hydro,CPU_Domain,CPU_Potential,CPU_Predict,CPU_TimeLine,CPU_Snapshot,CPU_TreeWalk,CPU_TreeConstruction,CPU_CommSum,CPU_Imbalance,CPU_HydCompWalk,CPU_HydCommSumm,CPU_HydImbalance,CPU_EnsureNgb,CPU_PM,CPU_Peano=io.read_cpu(file)
vals = {}
vals["Step"] = Step
vals["Time"] = Time
vals["nCPUs"] = CPUs
vals["CPU_Total"] = CPU_Total
vals["CPU_Gravity"] = CPU_Gravity
vals["CPU_Hydro"] = CPU_Hydro
vals["CPU_Domain"] = CPU_Domain
vals["CPU_Potential"] = CPU_Potential
vals["CPU_Predict"] = CPU_Predict
vals["CPU_TimeLine"] = CPU_TimeLine
vals["CPU_Snapshot"] = CPU_Snapshot
vals["CPU_TreeWalk"] = CPU_TreeWalk
vals["CPU_TreeConstruction"] = CPU_TreeConstruction
vals["CPU_CommSum"] = CPU_CommSum
vals["CPU_Imbalance"] = CPU_Imbalance
vals["CPU_HydCompWalk"] = CPU_HydCompWalk
vals["CPU_HydCommSumm"] = CPU_HydCommSumm
vals["CPU_HydImbalance"] = CPU_HydImbalance
vals["CPU_EnsureNgb"] = CPU_EnsureNgb
vals["CPU_PM"] = CPU_PM
vals["CPU_Peano"] = CPU_Peano
Time = vals["Time"]
nCPUs = vals["nCPUs"]
##############
# global bilan
##############
if opt.mode == 'total':
Gravity = vals["CPU_Gravity"] / vals["CPU_Total"]
Hydro = vals["CPU_Hydro"] / vals["CPU_Total"]
Domain = vals["CPU_Domain"] / vals["CPU_Total"]
Potential = vals["CPU_Potential"] / vals["CPU_Total"]
Predict = vals["CPU_Predict"] / vals["CPU_Total"]
TimeLine = vals["CPU_TimeLine"] / vals["CPU_Total"]
Snapshot = vals["CPU_Snapshot"] / vals["CPU_Total"]
Peano = vals["CPU_Peano"] / vals["CPU_Total"]
datas.append( pt.DataPoints(Time,Gravity,color='r' ,linestyle=linestyle,label='Gravity') )
datas.append( pt.DataPoints(Time,Hydro,color='g' ,linestyle=linestyle,label='Hydro') )
datas.append( pt.DataPoints(Time,Domain,color='b' ,linestyle=linestyle,label='Domain') )
datas.append( pt.DataPoints(Time,Potential,color='c',linestyle=linestyle,label='Potential') )
datas.append( pt.DataPoints(Time,Predict,color='m' ,linestyle=linestyle,label='Predict') )
datas.append( pt.DataPoints(Time,TimeLine,color='y' ,linestyle=linestyle,label='TimeLine') )
datas.append( pt.DataPoints(Time,Snapshot,color='k' ,linestyle=linestyle,label='Snapshot') )
datas.append( pt.DataPoints(Time,Peano,color='k' ,linestyle=linestyle,label='Peano') )
if vals.has_key('CPU_Chimie'):
Chimie = vals["CPU_Chimie"] / vals["CPU_Total"]
datas.append( pt.DataPoints(Time,Chimie,color='y' ,linestyle=linestyle,label='Chimie') )
if vals.has_key('CPU_StarFormation'):
StarFormation = vals["CPU_StarFormation"] / vals["CPU_Total"]
datas.append( pt.DataPoints(Time,StarFormation,color='b' ,linestyle=linestyle,label='StarFormation') )
##############
# gravity bilan
##############
elif opt.mode == 'gravity':
TreeWalk = vals["CPU_TreeWalk"] / vals["CPU_Gravity"]
TreeConstruction = vals["CPU_TreeConstruction"] / vals["CPU_Gravity"]
CommSum = vals["CPU_CommSum"] / vals["CPU_Gravity"]
Imbalance = vals["CPU_Imbalance"] / vals["CPU_Gravity"]
datas.append( pt.DataPoints(Time,TreeWalk, color='r',linestyle=linestyle,label='TreeWalk') )
datas.append( pt.DataPoints(Time,TreeConstruction,color='g',linestyle=linestyle,label='TreeConstruction') )
datas.append( pt.DataPoints(Time,CommSum, color='b',linestyle=linestyle,label='CommSum') )
datas.append( pt.DataPoints(Time,Imbalance, color='k',linestyle=linestyle,label='Imbalance') )
##############
# gas bilan
##############
elif opt.mode == 'hydro':
print "warning, CPU_HydCompWalk,CPU_HydCommSumm,CPU_HydImbalance, CPU_EnsureNgb "
print "are means of total time"
HydCompWalk = vals["CPU_HydCompWalk"] / vals["CPU_Hydro"]
HydCommSumm = vals["CPU_HydCommSumm"] / vals["CPU_Hydro"]
HydImbalance = vals["CPU_HydImbalance"] / vals["CPU_Hydro"]
EnsureNgb = vals["CPU_EnsureNgb"] / vals["CPU_Hydro"]
datas.append( pt.DataPoints(Time,HydCompWalk, color='r',linestyle=linestyle,label='HydCompWalk') )
datas.append( pt.DataPoints(Time,HydCommSumm, color='g',linestyle=linestyle,label='HydCommSumm') )
datas.append( pt.DataPoints(Time,HydImbalance, color='b',linestyle=linestyle,label='HydImbalance') )
datas.append( pt.DataPoints(Time,EnsureNgb, color='k',linestyle=linestyle,label='EnsureNgb') )
pt.legend(['HydCompWalk','HydCommSumm','HydImbalance','EnsureNgb'])
# now, plot
for d in datas:
pt.plot(d.x,d.y,color=d.color,linestyle=d.linestyle)
# set limits and draw axis
xmin,xmax,ymin,ymax = pt.SetLimitsFromDataPoints(opt.xmin,opt.xmax,opt.ymin,opt.ymax,datas,opt.log)
pt.SetAxis(xmin,xmax,ymin,ymax,log=opt.log)
if opt.legend:
pt.LegendFromDataPoints(datas)
pt.xlabel('Time')
pt.ylabel('Fraction')
pt.title('Runned on %d CPUs'%(nCPUs[0]))
del vals
if __name__ == '__main__':
files,opt = parse_options()
pt.InitPlot(files,opt)
#pt.figure(figsize=(8*2,6*2))
#pt.figure(dpi=10)
#fig = pt.gcf()
#fig.subplots_adjust(left=0.1)
#fig.subplots_adjust(right=1)
#fig.subplots_adjust(bottom=0.12)
#fig.subplots_adjust(top=0.95)
#fig.subplots_adjust(wspace=0.25)
#fig.subplots_adjust(hspace=0.02)
MakePlot(files,opt)
pt.EndPlot(files,opt)
Event Timeline
Log In to Comment