module collision ! contains the Hermite-Laguerre collision operators. Solved using COSOlver. USE array USE basic USE fields USE futils USE grid USE model USE prec_const USE time_integration USE utility IMPLICIT NONE PRIVATE ! Set the collision model to use ! (Lenard-Bernstein: 'LB', Dougherty: 'DG', Sugama: 'SG', Lorentz: 'LR', Landau: 'LD') CHARACTER(len=2),PUBLIC,PROTECTED :: collision_model LOGICAL, PUBLIC, PROTECTED :: gyrokin_CO =.true. ! activates GK effects on CO LOGICAL, PUBLIC, PROTECTED :: interspecies =.true. ! activates interpecies collision CHARACTER(len=128), PUBLIC :: mat_file ! COSOlver matrix file names REAL(dp), PUBLIC, PROTECTED :: collision_kcut = 100.0 LOGICAL, PUBLIC, PROTECTED :: cosolver_coll ! check if cosolver matrices are used PUBLIC :: collision_readinputs, coll_outputinputs PUBLIC :: compute_TColl PUBLIC :: compute_lenard_bernstein, compute_dougherty PUBLIC :: LenardBernstein_e, LenardBernstein_i!, LenardBernstein GK PUBLIC :: DoughertyGK_ee, DoughertyGK_ii!, Dougherty GK PUBLIC :: load_COSOlver_mat, compute_cosolver_coll PUBLIC :: apply_COSOlver_mat_e, apply_COSOlver_mat_i CONTAINS SUBROUTINE collision_readinputs ! Read the input parameters IMPLICIT NONE NAMELIST /COLLISION_PAR/ collision_model, gyrokin_CO, interspecies, mat_file, collision_kcut READ(lu_in,collision_par) SELECT CASE(collision_model) CASE ('LB') ! Lenhard bernstein cosolver_coll = .false. interspecies = .false. CASE ('DG') ! Dougherty cosolver_coll = .false. interspecies = .false. CASE ('SG') ! Sugama cosolver_coll = .true. CASE ('LR') ! Lorentz (Pitch angle) cosolver_coll = .true. interspecies = .false. CASE ('LD') ! Landau cosolver_coll = .true. CASE ('none') cosolver_coll = .false. interspecies = .false. CASE DEFAULT ERROR STOP 'Error stop: collision model not recognized!!' END SELECT END SUBROUTINE collision_readinputs SUBROUTINE coll_outputinputs(fidres, str) ! Write the input parameters to the results_xx.h5 file IMPLICIT NONE INTEGER, INTENT(in) :: fidres CHARACTER(len=256), INTENT(in) :: str CHARACTER(len=2) :: gkco = 'dk' CHARACTER(len=2) :: abco = 'aa' CHARACTER(len=6) :: coname IF (gyrokin_CO) gkco = 'GK' IF (interspecies) abco = 'ab' WRITE(coname,'(a2,a2,a2)') collision_model,gkco,abco CALL attach(fidres, TRIM(str), "CO", coname) CALL attach(fidres, TRIM(str), "matfilename", mat_file) END SUBROUTINE coll_outputinputs SUBROUTINE compute_TColl USE basic USE model, ONLY : nu IMPLICIT NONE ! Execution time start CALL cpu_time(t0_coll) IF (nu .NE. 0) THEN SELECT CASE(collision_model) CASE ('LB') CALL compute_lenard_bernstein CASE ('DG') CALL compute_dougherty CASE ('SG','LR','LD') CALL compute_cosolver_coll CASE ('none') IF(KIN_E) & TColl_e = 0._dp TColl_i = 0._dp CASE DEFAULT ERROR STOP 'Error stop: collision operator not recognized!!' END SELECT ELSE IF(KIN_E) & TColl_e = 0._dp TColl_i = 0._dp ENDIF ! Execution time end CALL cpu_time(t1_coll) tc_coll = tc_coll + (t1_coll - t0_coll) END SUBROUTINE compute_TColl !******************************************************************************! !! Lenard Bernstein collision operator !******************************************************************************! SUBROUTINE compute_lenard_bernstein IMPLICIT NONE COMPLEX(dp) :: TColl_ IF (KIN_E) THEN DO ip = ips_e,ipe_e;DO ij = ijs_e,ije_e DO ikx = ikxs, ikxe;DO iky = ikys, ikye; DO iz = izs,ize CALL LenardBernstein_e(ip,ij,iky,ikx,iz,TColl_) TColl_e(ip,ij,iky,ikx,iz) = TColl_ ENDDO;ENDDO;ENDDO ENDDO;ENDDO ENDIF DO ip = ips_i,ipe_i;DO ij = ijs_i,ije_i DO ikx = ikxs, ikxe;DO iky = ikys, ikye; DO iz = izs,ize CALL LenardBernstein_i(ip,ij,iky,ikx,iz,TColl_) TColl_i(ip,ij,iky,ikx,iz) = TColl_ ENDDO;ENDDO;ENDDO ENDDO;ENDDO END SUBROUTINE compute_lenard_bernstein !******************************************************************************! !! for electrons !******************************************************************************! SUBROUTINE LenardBernstein_e(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_,ij_,iky_,ikx_,iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ REAL(dp) :: j_dp, p_dp, be_2, kp INTEGER :: eo_ !** Auxiliary variables ** eo_ = MODULO(parray_e(ip_),2) p_dp = REAL(parray_e(ip_),dp) j_dp = REAL(jarray_e(ij_),dp) kp = kparray(iky_,ikx_,iz_,eo_) be_2 = kp**2 * sigmae2_taue_o2 ! this is (be/2)^2 eo_ = MODULO(parray_e(ip_),2) !** Assembling collison operator ** ! -nuee (p + 2j) Nepj TColl_ = -nu_ee * (p_dp + 2._dp*j_dp)*moments_e(ip_,ij_,iky_,ikx_,iz_,updatetlevel) IF(gyrokin_CO) THEN TColl_ = TColl_ - nu_ee *2._dp*be_2*moments_e(ip_,ij_,iky_,ikx_,iz_,updatetlevel) ENDIF END SUBROUTINE LenardBernstein_e !******************************************************************************! !! for ions !******************************************************************************! SUBROUTINE LenardBernstein_i(ip_,ij_,iky_,ikx_,iz_,TColl_) USE fields, ONLY: moments_i USE grid, ONLY: parray_i, jarray_i USE basic USE model, ONLY: sigmai2_taui_o2, nu_i USE time_integration, ONLY : updatetlevel IMPLICIT NONE INTEGER, INTENT(IN) :: ip_,ij_,iky_,ikx_,iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ REAL(dp) :: j_dp, p_dp, kp, bi_2 INTEGER :: eo_ !** Auxiliary variables ** eo_ = MODULO(parray_i(ip_),2) p_dp = REAL(parray_i(ip_),dp) j_dp = REAL(jarray_i(ij_),dp) kp = kparray(iky_,ikx_,iz_,eo_) bi_2 = kp**2 * sigmai2_taui_o2 ! this is (be/2)^2 !** Assembling collison operator ** ! -nuii (p + 2j) Nipj TColl_ = -nu_i * (p_dp + 2._dp*j_dp)*moments_i(ip_,ij_,iky_,ikx_,iz_,updatetlevel) IF(gyrokin_CO) THEN TColl_ = TColl_ - nu_i *2._dp*bi_2*moments_i(ip_,ij_,iky_,ikx_,iz_,updatetlevel) ENDIF END SUBROUTINE LenardBernstein_i !******************************************************************************! !! Doughtery collision operator !******************************************************************************! SUBROUTINE compute_dougherty IMPLICIT NONE COMPLEX(dp) :: TColl_ IF (KIN_E) THEN DO iz = izs,ize DO iky = ikys, ikye; DO ikx = ikxs, ikxe; DO ij = ijs_e,ije_e DO ip = ips_e,ipe_e; IF(gyrokin_CO) THEN CALL DoughertyGK_ee(ip,ij,iky,ikx,iz,TColl_) ELSE CALL DoughertyDK_ee(ip,ij,iky,ikx,iz,TColl_) ENDIF TColl_e(ip,ij,iky,ikx,iz) = TColl_ ENDDO;ENDDO;ENDDO ENDDO;ENDDO ENDIF DO iz = izs,ize DO iky = ikys, ikye; DO ikx = ikxs, ikxe; DO ij = ijs_i,ije_i DO ip = ips_i,ipe_i; IF(gyrokin_CO) THEN CALL DoughertyGK_ii(ip,ij,iky,ikx,iz,TColl_) ELSE CALL DoughertyDK_ii(ip,ij,iky,ikx,iz,TColl_) ENDIF TColl_i(ip,ij,iky,ikx,iz) = TColl_ ENDDO;ENDDO;ENDDO ENDDO;ENDDO END SUBROUTINE compute_dougherty !******************************************************************************! !! Doughtery driftkinetic collision operator for electrons !******************************************************************************! SUBROUTINE DoughertyDK_ee(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_,ij_,iky_,ikx_,iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ REAL(dp) :: j_dp, p_dp !** Auxiliary variables ** p_dp = REAL(parray_e(ip_),dp) j_dp = REAL(jarray_e(ij_),dp) !** Assembling collison operator ** TColl_ = -(p_dp + 2._dp*j_dp)*moments_e(ip_,ij_,iky_,ikx_,iz_,updatetlevel) IF( (p_dp .EQ. 1._dp) .AND. (j_dp .EQ. 0._dp)) THEN !Ce10 TColl_ = TColl_ + moments_e(ip1_e,1,iky_,ikx_,iz_,updatetlevel) ELSEIF( (p_dp .EQ. 2._dp) .AND. (j_dp .EQ. 0._dp)) THEN ! Ce20 TColl_ = TColl_ + twothird*moments_e(ip2_e,1,iky_,ikx_,iz_,updatetlevel) & - SQRT2*twothird*moments_e(ip0_e,2,iky_,ikx_,iz_,updatetlevel) ELSEIF( (p_dp .EQ. 0._dp) .AND. (j_dp .EQ. 1._dp)) THEN ! Ce01 TColl_ = TColl_ + 2._dp*twothird*moments_e(ip0_e,2,iky_,ikx_,iz_,updatetlevel) & - SQRT2*twothird*moments_e(ip2_e,1,iky_,ikx_,iz_,updatetlevel) ENDIF TColl_ = nu_ee * TColl_ END SUBROUTINE DoughertyDK_ee !******************************************************************************! !! Doughtery driftkinetic collision operator for ions !******************************************************************************! SUBROUTINE DoughertyDK_ii(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_,ij_,iky_,ikx_,iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ REAL(dp) :: j_dp, p_dp !** Auxiliary variables ** p_dp = REAL(parray_i(ip_),dp) j_dp = REAL(jarray_i(ij_),dp) !** Assembling collison operator ** TColl_ = -(p_dp + 2._dp*j_dp)*moments_i(ip_,ij_,iky_,ikx_,iz_,updatetlevel) IF( (p_dp .EQ. 1._dp) .AND. (j_dp .EQ. 0._dp)) THEN ! kronecker p1j0 TColl_ = TColl_ + moments_i(ip1_i,1,iky_,ikx_,iz_,updatetlevel) ELSEIF( (p_dp .EQ. 2._dp) .AND. (j_dp .EQ. 0._dp)) THEN ! kronecker p2j0 TColl_ = TColl_ + twothird*moments_i(ip2_i,1,iky_,ikx_,iz_,updatetlevel) & - SQRT2*twothird*moments_i(ip0_i,2,iky_,ikx_,iz_,updatetlevel) ELSEIF( (p_dp .EQ. 0._dp) .AND. (j_dp .EQ. 1._dp)) THEN ! kronecker p0j1 TColl_ = TColl_ + 2._dp*twothird*moments_i(ip0_i,2,iky_,ikx_,iz_,updatetlevel) & - SQRT2*twothird*moments_i(ip2_i,1,iky_,ikx_,iz_,updatetlevel) ENDIF TColl_ = nu_i * TColl_ END SUBROUTINE DoughertyDK_ii !******************************************************************************! !! Doughtery gyrokinetic collision operator for electrons !******************************************************************************! SUBROUTINE DoughertyGK_ee(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_,ij_,iky_,ikx_,iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ COMPLEX(dp) :: n_,upar_,uperp_,Tpar_, Tperp_, T_ COMPLEX(dp) :: nadiab_moment_0j REAL(dp) :: Knp0, Knp1, Knm1, kp INTEGER :: in_, eo_ REAL(dp) :: n_dp, j_dp, p_dp, be_, be_2 !** Auxiliary variables ** p_dp = REAL(parray_e(ip_),dp) eo_ = MODULO(parray_e(ip_),2) j_dp = REAL(jarray_e(ij_),dp) kp = kparray(iky_,ikx_,iz_,eo_) be_2 = kp**2 * sigmae2_taue_o2 ! this is (be/2)^2 be_ = 2_dp*kp * sqrt_sigmae2_taue_o2 ! this is be !** Assembling collison operator ** ! Velocity-space diffusion (similar to Lenard Bernstein) ! -nuee (p + 2j + b^2/2) Nepj TColl_ = -(p_dp + 2._dp*j_dp + 2._dp*be_2)*nadiab_moments_e(ip_,ij_,iky_,ikx_,iz_) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF( p_dp .EQ. 0 ) THEN ! Kronecker p0 !** build required fluid moments ** n_ = 0._dp upar_ = 0._dp; uperp_ = 0._dp Tpar_ = 0._dp; Tperp_ = 0._dp DO in_ = 1,jmaxe+1 n_dp = REAL(in_-1,dp) ! Store the kernels for sparing readings Knp0 = Kernel_e(in_ ,iky_,ikx_,iz_,eo_) Knp1 = Kernel_e(in_+1,iky_,ikx_,iz_,eo_) Knm1 = Kernel_e(in_-1,iky_,ikx_,iz_,eo_) ! Nonadiabatic moments (only different from moments when p=0) nadiab_moment_0j = nadiab_moments_e(ip0_e,in_,iky_,ikx_,iz_) ! Density n_ = n_ + Knp0 * nadiab_moment_0j ! Perpendicular velocity uperp_ = uperp_ + be_*0.5_dp*(Knp0 - Knm1) * nadiab_moment_0j ! Parallel temperature Tpar_ = Tpar_ + Knp0 * (SQRT2*nadiab_moments_e(ip2_e,in_,iky_,ikx_,iz_) + nadiab_moment_0j) ! Perpendicular temperature Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1._dp)*Knp1 - n_dp*Knm1)*nadiab_moment_0j ENDDO T_ = (Tpar_ + 2._dp*Tperp_)/3._dp - n_ ! Add energy restoring term TColl_ = TColl_ + T_* 4._dp * j_dp * Kernel_e(ij_ ,iky_,ikx_,iz_,eo_) TColl_ = TColl_ - T_* 2._dp * (j_dp + 1._dp) * Kernel_e(ij_+1,iky_,ikx_,iz_,eo_) TColl_ = TColl_ - T_* 2._dp * j_dp * Kernel_e(ij_-1,iky_,ikx_,iz_,eo_) TColl_ = TColl_ + uperp_*be_* (Kernel_e(ij_,iky_,ikx_,iz_,eo_) - Kernel_e(ij_-1,iky_,ikx_,iz_,eo_)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ELSEIF( p_dp .eq. 1 ) THEN ! kronecker p1 !** build required fluid moments ** upar_ = 0._dp DO in_ = 1,jmaxe+1 ! Parallel velocity upar_ = upar_ + Kernel_e(in_,iky_,ikx_,iz_,eo_) * nadiab_moments_e(ip1_e,in_,iky_,ikx_,iz_) ENDDO TColl_ = TColl_ + upar_*Kernel_e(ij_,iky_,ikx_,iz_,eo_) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ELSEIF( p_dp .eq. 2 ) THEN ! kronecker p2 !** build required fluid moments ** n_ = 0._dp upar_ = 0._dp; uperp_ = 0._dp Tpar_ = 0._dp; Tperp_ = 0._dp DO in_ = 1,jmaxe+1 n_dp = REAL(in_-1,dp) ! Store the kernels for sparing readings Knp0 = Kernel_e(in_ ,iky_,ikx_,iz_,eo_) Knp1 = Kernel_e(in_+1,iky_,ikx_,iz_,eo_) Knm1 = Kernel_e(in_-1,iky_,ikx_,iz_,eo_) ! Nonadiabatic moments (only different from moments when p=0) nadiab_moment_0j = nadiab_moments_e(ip0_e,in_,iky_,ikx_,iz_) ! Density n_ = n_ + Knp0 * nadiab_moment_0j ! Parallel temperature Tpar_ = Tpar_ + Knp0 * (SQRT2*nadiab_moments_e(ip2_e,in_,iky_,ikx_,iz_) + nadiab_moment_0j) ! Perpendicular temperature Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1._dp)*Knp1 - n_dp*Knm1)*nadiab_moment_0j ENDDO T_ = (Tpar_ + 2._dp*Tperp_)/3._dp - n_ TColl_ = TColl_ + T_*SQRT2*Kernel_e(ij_,iky_,ikx_,iz_,eo_) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ENDIF ! Multiply by electron-electron collision coefficient TColl_ = nu_ee * TColl_ END SUBROUTINE DoughertyGK_ee !******************************************************************************! !! Doughtery gyrokinetic collision operator for ions !******************************************************************************! SUBROUTINE DoughertyGK_ii(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_,ij_,iky_,ikx_,iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ COMPLEX(dp) :: n_,upar_,uperp_,Tpar_, Tperp_, T_ COMPLEX(dp) :: bi_, bi_2 COMPLEX(dp) :: nadiab_moment_0j REAL(dp) :: Knp0, Knp1, Knm1, kp INTEGER :: in_, eo_ REAL(dp) :: n_dp, j_dp, p_dp !** Auxiliary variables ** p_dp = REAL(parray_i(ip_),dp) eo_ = MODULO(parray_i(ip_),2) j_dp = REAL(jarray_i(ij_),dp) kp = kparray(iky_,ikx_,iz_,eo_) bi_2 = kp**2 *sigmai2_taui_o2 ! this is (bi/2)^2 bi_ = 2_dp*kp*sqrt_sigmai2_taui_o2 ! this is bi !** Assembling collison operator ** ! Velocity-space diffusion (similar to Lenard Bernstein) ! -nui (p + 2j + b^2/2) Nipj TColl_ = -(p_dp + 2._dp*j_dp + 2._dp*bi_2)*nadiab_moments_i(ip_,ij_,iky_,ikx_,iz_) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF( p_dp .EQ. 0 ) THEN ! Kronecker p0 !** build required fluid moments ** n_ = 0._dp upar_ = 0._dp; uperp_ = 0._dp Tpar_ = 0._dp; Tperp_ = 0._dp DO in_ = 1,jmaxi+1 n_dp = REAL(in_-1,dp) ! Store the kernels for sparing readings Knp0 = Kernel_i(in_ ,iky_,ikx_,iz_,eo_) Knp1 = Kernel_i(in_+1,iky_,ikx_,iz_,eo_) Knm1 = Kernel_i(in_-1,iky_,ikx_,iz_,eo_) ! Nonadiabatic moments (only different from moments when p=0) nadiab_moment_0j = nadiab_moments_i(ip0_i,in_,iky_,ikx_,iz_) ! Density n_ = n_ + Knp0 * nadiab_moment_0j ! Perpendicular velocity uperp_ = uperp_ + bi_*0.5_dp*(Knp0 - Knm1) * nadiab_moment_0j ! Parallel temperature Tpar_ = Tpar_ + Knp0 * (SQRT2*nadiab_moments_i(ip2_i,in_,iky_,ikx_,iz_) + nadiab_moment_0j) ! Perpendicular temperature Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1._dp)*Knp1 - n_dp*Knm1)*nadiab_moment_0j ENDDO T_ = (Tpar_ + 2._dp*Tperp_)*onethird - n_ ! Add energy restoring term TColl_ = TColl_ + T_* 4._dp * j_dp * Kernel_i(ij_ ,iky_,ikx_,iz_,eo_) TColl_ = TColl_ - T_* 2._dp * (j_dp + 1._dp) * Kernel_i(ij_+1,iky_,ikx_,iz_,eo_) TColl_ = TColl_ - T_* 2._dp * j_dp * Kernel_i(ij_-1,iky_,ikx_,iz_,eo_) TColl_ = TColl_ + uperp_*bi_* (Kernel_i(ij_,iky_,ikx_,iz_,eo_) - Kernel_i(ij_-1,iky_,ikx_,iz_,eo_)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ELSEIF( p_dp .eq. 1 ) THEN ! kxonecker p1 !** build required fluid moments ** upar_ = 0._dp DO in_ = 1,jmaxi+1 ! Parallel velocity upar_ = upar_ + Kernel_i(in_,iky_,ikx_,iz_,eo_) * nadiab_moments_i(ip1_i,in_,iky_,ikx_,iz_) ENDDO TColl_ = TColl_ + upar_*Kernel_i(ij_,iky_,ikx_,iz_,eo_) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ELSEIF( p_dp .eq. 2 ) THEN ! kxonecker p2 !** build required fluid moments ** n_ = 0._dp upar_ = 0._dp; uperp_ = 0._dp Tpar_ = 0._dp; Tperp_ = 0._dp DO in_ = 1,jmaxi+1 n_dp = REAL(in_-1,dp) ! Store the kernels for sparing readings Knp0 = Kernel_i(in_ ,iky_,ikx_,iz_,eo_) Knp1 = Kernel_i(in_+1,iky_,ikx_,iz_,eo_) Knm1 = Kernel_i(in_-1,iky_,ikx_,iz_,eo_) ! Nonadiabatic moments (only different from moments when p=0) nadiab_moment_0j = nadiab_moments_i(ip0_i,in_,iky_,ikx_,iz_) ! Density n_ = n_ + Knp0 * nadiab_moment_0j ! Parallel temperature Tpar_ = Tpar_ + Knp0 * (SQRT2*nadiab_moments_i(ip2_i,in_,iky_,ikx_,iz_) + nadiab_moment_0j) ! Perpendicular temperature Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1._dp)*Knp1 - n_dp*Knm1)*nadiab_moment_0j ENDDO T_ = (Tpar_ + 2._dp*Tperp_)*onethird - n_ TColl_ = TColl_ + T_*SQRT2*Kernel_i(ij_,iky_,ikx_,iz_,eo_) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ENDIF ! Multiply by ion-ion collision coefficient TColl_ = nu_i * TColl_ END SUBROUTINE DoughertyGK_ii !******************************************************************************! !! compute the collision terms in a (Np x Nj x Nkx x Nky) matrix all at once !******************************************************************************! SUBROUTINE compute_cosolver_coll IMPLICIT NONE COMPLEX(dp), DIMENSION(1:total_np_e) :: local_sum_e, buffer_e COMPLEX(dp), DIMENSION(ips_e:ipe_e) :: TColl_distr_e COMPLEX(dp), DIMENSION(1:total_np_i) :: local_sum_i, buffer_i COMPLEX(dp), DIMENSION(ips_i:ipe_i) :: TColl_distr_i COMPLEX(dp) :: TColl DO iz = izs,ize DO ikx = ikxs,ikxe DO iky = ikys,ikye IF(KIN_E) THEN DO ij = 1,Jmaxe+1 ! Electrons ! Loop over all p to compute sub collision term DO ip = 1,total_np_e CALL apply_COSOlver_mat_e(ip,ij,iky,ikx,iz,TColl) local_sum_e(ip) = TColl ENDDO IF (num_procs_p .GT. 1) THEN ! Sum up all the sub collision terms on root 0 CALL MPI_REDUCE(local_sum_e, buffer_e, total_np_e, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm_p, ierr) ! distribute the sum over the process among p CALL MPI_SCATTERV(buffer_e, rcv_p_e, dsp_p_e, MPI_DOUBLE_COMPLEX,& TColl_distr_e, local_np_e, MPI_DOUBLE_COMPLEX,& 0, comm_p, ierr) ELSE TColl_distr_e = local_sum_e ENDIF ! Write in output variable DO ip = ips_e,ipe_e TColl_e(ip,ij,iky,ikx,iz) = TColl_distr_e(ip) ENDDO ENDDO ENDIF ! Ions DO ij = 1,Jmaxi+1 DO ip = 1,total_np_i CALL apply_COSOlver_mat_i(ip,ij,iky,ikx,iz,TColl) local_sum_i(ip) = TColl ENDDO IF (num_procs_p .GT. 1) THEN ! Reduce the local_sums to root = 0 CALL MPI_REDUCE(local_sum_i, buffer_i, total_np_i, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm_p, ierr) ! buffer contains the entire collision term along p, we scatter it between ! the other processes (use of scatterv since Pmax/Np is not an integer) CALL MPI_SCATTERV(buffer_i, rcv_p_i, dsp_p_i, MPI_DOUBLE_COMPLEX,& TColl_distr_i, local_np_i, MPI_DOUBLE_COMPLEX, & 0, comm_p, ierr) ELSE TColl_distr_i = local_sum_i ENDIF ! Write in output variable DO ip = ips_i,ipe_i TColl_i(ip,ij,iky,ikx,iz) = TColl_distr_i(ip) ENDDO ENDDO ENDDO ENDDO ENDDO END SUBROUTINE compute_cosolver_coll !******************************************************************************! !!!!!!! Compute electron collision term !******************************************************************************! SUBROUTINE apply_COSOlver_mat_e(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_, ij_ ,ikx_, iky_, iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ INTEGER :: ip2,ij2, p_int,j_int, p2_int,j2_int, iky_C, ikx_C, iz_C p_int = parray_e_full(ip_); j_int = jarray_e_full(ij_); IF (gyrokin_CO) THEN ! GK operator (k-dependant) ikx_C = ikx_; iky_C = iky_; iz_C = iz_ ELSE ! DK operator (only one mat for every k) ikx_C = 1; iky_C = 1; iz_C = 1; ENDIF TColl_ = 0._dp ! Initialization of the local sum ! sum the electron-self and electron-ion test terms ploopee: DO ip2 = ips_e,ipe_e p2_int = parray_e(ip2) jloopee: DO ij2 = ijs_e,ije_e j2_int = jarray_e(ij2) IF((CLOS .NE. 1) .OR. (p2_int+2*j2_int .LE. dmaxe))& TColl_ = TColl_ + nadiab_moments_e(ip2,ij2,iky_,ikx_,iz_) & *( nu_e * CeipjT(bare(p_int,j_int), bare(p2_int,j2_int),iky_C, ikx_C, iz_C) & +nu_ee * Ceepj (bare(p_int,j_int), bare(p2_int,j2_int),iky_C, ikx_C, iz_C)) ENDDO jloopee ENDDO ploopee ! sum the electron-ion field terms ploopei: DO ip2 = ips_i,ipe_i p2_int = parray_i(ip2) jloopei: DO ij2 = ijs_i,ije_i j2_int = jarray_i(ij2) IF((CLOS .NE. 1) .OR. (p2_int+2*j2_int .LE. dmaxi))& TColl_ = TColl_ + nadiab_moments_i(ip2,ij2,iky_,ikx_,iz_) & *(nu_e * CeipjF(bare(p_int,j_int), bari(p2_int,j2_int),iky_C, ikx_C, iz_C)) END DO jloopei ENDDO ploopei END SUBROUTINE apply_COSOlver_mat_e !******************************************************************************! !!!!!!! Compute ion collision term !******************************************************************************! SUBROUTINE apply_COSOlver_mat_i(ip_,ij_,iky_,ikx_,iz_,TColl_) IMPLICIT NONE INTEGER, INTENT(IN) :: ip_, ij_ ,ikx_, iky_, iz_ COMPLEX(dp), INTENT(OUT) :: TColl_ INTEGER :: ip2,ij2, p_int,j_int, p2_int,j2_int, iky_C, ikx_C, iz_C p_int = parray_i_full(ip_); j_int = jarray_i_full(ij_); IF (gyrokin_CO) THEN ! GK operator (k-dependant) ikx_C = ikx_; iky_C = iky_; iz_C = iz_; ELSE ! DK operator (only one mat for every k) ikx_C = 1; iky_C = 1; iz_C = 1; ENDIF TColl_ = 0._dp ! Initialization ! sum the ion-self and ion-electron test terms ploopii: DO ip2 = ips_i,ipe_i p2_int = parray_i(ip2) jloopii: DO ij2 = ijs_i,ije_i j2_int = jarray_i(ij2) IF((CLOS .NE. 1) .OR. (p2_int+2*j2_int .LE. dmaxi))& ! Ion-ion collision TColl_ = TColl_ + nadiab_moments_i(ip2,ij2,iky_,ikx_,iz_) & * nu_i * Ciipj (bari(p_int,j_int), bari(p2_int,j2_int), iky_C, ikx_C, iz_C) IF(KIN_E) & ! Ion-electron collision test TColl_ = TColl_ + nadiab_moments_i(ip2,ij2,iky_,ikx_,iz_) & * nu_ie * CiepjT(bari(p_int,j_int), bari(p2_int,j2_int), iky_C, ikx_C, iz_C) ENDDO jloopii ENDDO ploopii IF(KIN_E) THEN ! Ion-electron collision field ploopie: DO ip2 = ips_e,ipe_e ! sum the ion-electron field terms p2_int = parray_e(ip2) jloopie: DO ij2 = ijs_e,ije_e j2_int = jarray_e(ij2) IF((CLOS .NE. 1) .OR. (p2_int+2*j2_int .LE. dmaxe))& TColl_ = TColl_ + nadiab_moments_e(ip2,ij2,iky_,ikx_,iz_) & *(nu_ie * CiepjF(bari(p_int,j_int), bare(p2_int,j2_int), iky_C, ikx_C, iz_C)) ENDDO jloopie ENDDO ploopie ENDIF END SUBROUTINE apply_COSOlver_mat_i !******************************************************************************! !!!!!!! Load the collision matrix coefficient table from COSOlver results !******************************************************************************! SUBROUTINE load_COSOlver_mat ! Load a sub matrix from iCa files (works for pmaxa,jmaxa<=P_full,J_full) IMPLICIT NONE ! Indices for row and columns of the COSOlver matrix (4D compressed 2D matrices) INTEGER :: irow_sub, irow_full, icol_sub, icol_full INTEGER :: fid ! file indexation INTEGER :: ip_e, ij_e, il_e, ik_e, ikps_C, ikpe_C ! indices for electrons loops REAL(dp), DIMENSION(2) :: dims_e INTEGER :: pdime, jdime ! dimensions of the COSOlver matrices REAL(dp), DIMENSION(:,:), ALLOCATABLE :: Ceepj_full, CeipjT_full ! To load the entire matrix REAL(dp), DIMENSION(:,:), ALLOCATABLE :: CeipjF_full ! '' REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: Ceepj__kp, CeipjT_kp ! To store the coeff that will be used along kperp REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: CeipjF_kp ! '' INTEGER :: ip_i, ij_i, il_i, ik_i ! same for ions INTEGER, DIMENSION(2) :: dims_i INTEGER :: pdimi, jdimi ! dimensions of the COSOlver matrices REAL(dp), DIMENSION(:,:), ALLOCATABLE :: Ciipj_full, CiepjT_full ! . REAL(dp), DIMENSION(:,:), ALLOCATABLE :: CiepjF_full ! . REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: Ciipj__kp, CiepjT_kp ! . REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: CiepjF_kp ! . REAL(dp), DIMENSION(:), ALLOCATABLE :: kp_grid_mat ! kperp grid of the matrices INTEGER :: ikp_next, ikp_prev, nkp_mat, ikp_mat REAL(dp) :: kp_max REAL(dp) :: kperp_sim, kperp_mat, zerotoone CHARACTER(len=128) :: var_name, ikp_string !! Some terminal info SELECT CASE (collision_model) CASE ('SG') IF (my_id .EQ. 0) WRITE(*,*) '=== Load Sugama matrix ===' CASE ('LR') IF (my_id .EQ. 0) WRITE(*,*) '=== Load Lorentz matrix ===' CASE ('LD') IF (my_id .EQ. 0) WRITE(*,*) '=== Load Landau matrix ===' END SELECT SELECT CASE (gyrokin_CO) CASE (.true.) IF (my_id .EQ. 0) WRITE(*,*) '..gyrokinetic model..' CASE (.false.) IF (my_id .EQ. 0) WRITE(*,*) '..driftkinetic model..' END SELECT ! Opening the compiled cosolver matrices results if(my_id.EQ.0)write(*,*) mat_file CALL openf(mat_file,fid, 'r', 'D', mpicomm=comm_p); ! Get matrices dimensions (polynomials degrees and kperp grid) CALL getarr(fid, '/dims_e', dims_e) ! Get the electron polynomial degrees pdime = dims_e(1); jdime = dims_e(2); CALL getarr(fid, '/dims_i', dims_i) ! Get the ion polynomial degrees pdimi = dims_i(1); jdimi = dims_i(2); IF ( ((pdime .LT. pmaxe) .OR. (jdime .LT. jmaxe)) .AND. (my_id .EQ. 0)) WRITE(*,*) '!! Pe,Je Matrix too small !!' IF ( ((pdimi .LT. pmaxi) .OR. (jdimi .LT. jmaxi)) .AND. (my_id .EQ. 0)) WRITE(*,*) '!! Pi,Ji Matrix too small !!' CALL getsize(fid, '/coordkperp', nkp_mat) ! Get the dimension kperp grid of the matrices CALL allocate_array(kp_grid_mat, 1,nkp_mat) CALL getarr(fid, '/coordkperp', kp_grid_mat) kp_max = SQRT(kx_max**2+ky_max**2) ! check that we have enough kperps mat IF (LINEARITY .NE. 'linear') THEN IF ( (kp_grid_mat(nkp_mat) .LT. 2./3.*kp_max) .AND. (my_id .EQ. 0)) WRITE(*,*) '!! Matrix kperp grid too small !!' ELSE IF ( (kp_grid_mat(nkp_mat) .LT. kp_max) .AND. (my_id .EQ. 0)) WRITE(*,*) '!! Matrix kperp grid too small !!' ENDIF IF (gyrokin_CO) THEN ! GK operator (k-dependant) ikps_C = 1; ikpe_C = nkp_mat ELSE ! DK operator (only one mat for all k) ikps_C = 1; ikpe_C = 1 ENDIF CALL allocate_array( Ceepj__kp, 1,(pmaxe+1)*(jmaxe+1), 1,(pmaxe+1)*(jmaxe+1), ikps_C,ikpe_C) CALL allocate_array( CeipjT_kp, 1,(pmaxe+1)*(jmaxe+1), 1,(pmaxe+1)*(jmaxe+1), ikps_C,ikpe_C) CALL allocate_array( CeipjF_kp, 1,(pmaxe+1)*(jmaxe+1), 1,(pmaxe+1)*(jmaxe+1), ikps_C,ikpe_C) CALL allocate_array( Ciipj__kp, 1,(pmaxe+1)*(jmaxe+1), 1,(pmaxe+1)*(jmaxe+1), ikps_C,ikpe_C) CALL allocate_array( CiepjT_kp, 1,(pmaxe+1)*(jmaxe+1), 1,(pmaxe+1)*(jmaxe+1), ikps_C,ikpe_C) CALL allocate_array( CiepjF_kp, 1,(pmaxe+1)*(jmaxe+1), 1,(pmaxe+1)*(jmaxe+1), ikps_C,ikpe_C) DO ikp = ikps_C,ikpe_C ! Loop over everz kperp values ! Kperp value in string format to select in cosolver hdf5 file IF (gyrokin_CO) THEN write(ikp_string,'(i5.5)') ikp-1 ELSE write(ikp_string,'(i5.5)') 0 ENDIF !!!!!!!!!!!! E-E matrices !!!!!!!!!!!! ! get the self electron colision matrix ! Allocate space for storing full collision matrix CALL allocate_array( Ceepj_full, 1,(pdime+1)*(jdime+1), 1,(pdime+1)*(jdime+1)) ! Naming of the array to load (kperp dependant) WRITE(var_name,'(a,a)') TRIM(ADJUSTL(ikp_string)),'/Caapj/Ceepj' CALL getarr(fid, var_name, Ceepj_full) ! get array (moli format) ! Fill sub array with the usefull polynmial degrees only DO ip_e = 0,pmaxe ! Loop over rows DO ij_e = 0,jmaxe irow_sub = (jmaxe +1)*ip_e + ij_e +1 irow_full = (jdime +1)*ip_e + ij_e +1 DO il_e = 0,pmaxe ! Loop over columns DO ik_e = 0,jmaxe icol_sub = (jmaxe +1)*il_e + ik_e +1 icol_full = (jdime +1)*il_e + ik_e +1 Ceepj__kp (irow_sub,icol_sub,ikp) = Ceepj_full (irow_full,icol_full) ENDDO ENDDO ENDDO ENDDO DEALLOCATE(Ceepj_full) !!!!!!!!!!!!!!! I-I matrices !!!!!!!!!!!!!! ! get the self electron colision matrix CALL allocate_array( Ciipj_full, 1,(pdimi+1)*(jdimi+1), 1,(pdimi+1)*(jdimi+1)) WRITE(var_name,'(a,a,a)') TRIM(ADJUSTL(ikp_string)),'/Caapj/Ciipj' CALL getarr(fid, var_name, Ciipj_full) ! get array (moli format) ! Fill sub array with only usefull polynmials degree DO ip_i = 0,Pmaxi ! Loop over rows DO ij_i = 0,Jmaxi irow_sub = (Jmaxi +1)*ip_i + ij_i +1 irow_full = (jdimi +1)*ip_i + ij_i +1 DO il_i = 0,Pmaxi ! Loop over columns DO ik_i = 0,Jmaxi icol_sub = (Jmaxi +1)*il_i + ik_i +1 icol_full = (jdimi +1)*il_i + ik_i +1 Ciipj__kp (irow_sub,icol_sub,ikp) = Ciipj_full (irow_full,icol_full) ENDDO ENDDO ENDDO ENDDO DEALLOCATE(Ciipj_full) IF(interspecies) THEN ! Pitch angle is only applied on like-species !!!!!!!!!!!!!!! E-I matrices !!!!!!!!!!!!!! ! Get test and field e-i collision matrices CALL allocate_array( CeipjT_full, 1,(pdime+1)*(jdime+1), 1,(pdime+1)*(jdime+1)) CALL allocate_array( CeipjF_full, 1,(pdime+1)*(jdime+1), 1,(pdimi+1)*(jdimi+1)) WRITE(var_name,'(a,a)') TRIM(ADJUSTL(ikp_string)),'/Ceipj/CeipjT' CALL getarr(fid, var_name, CeipjT_full) WRITE(var_name,'(a,a)') TRIM(ADJUSTL(ikp_string)),'/Ceipj/CeipjF' CALL getarr(fid, var_name, CeipjF_full) ! Fill sub array with only usefull polynmials degree DO ip_e = 0,pmaxe ! Loop over rows DO ij_e = 0,jmaxe irow_sub = (jmaxe +1)*ip_e + ij_e +1 irow_full = (jdime +1)*ip_e + ij_e +1 DO il_e = 0,pmaxe ! Loop over columns DO ik_e = 0,jmaxe icol_sub = (jmaxe +1)*il_e + ik_e +1 icol_full = (jdime +1)*il_e + ik_e +1 CeipjT_kp(irow_sub,icol_sub,ikp) = CeipjT_full(irow_full,icol_full) ENDDO ENDDO DO il_i = 0,pmaxi ! Loop over columns DO ik_i = 0,jmaxi icol_sub = (Jmaxi +1)*il_i + ik_i +1 icol_full = (jdimi +1)*il_i + ik_i +1 CeipjF_kp(irow_sub,icol_sub,ikp) = CeipjF_full(irow_full,icol_full) ENDDO ENDDO ENDDO ENDDO DEALLOCATE(CeipjF_full) DEALLOCATE(CeipjT_full) !!!!!!!!!!!!!!! I-E matrices !!!!!!!!!!!!!! ! get the Test and Back field electron ion collision matrix CALL allocate_array( CiepjT_full, 1,(pdimi+1)*(jdimi+1), 1,(pdimi+1)*(jdimi+1)) CALL allocate_array( CiepjF_full, 1,(pdimi+1)*(jdimi+1), 1,(pdime+1)*(jdime+1)) WRITE(var_name,'(a,a,a)') TRIM(ADJUSTL(ikp_string)),'/Ciepj/CiepjT' CALL getarr(fid, var_name, CiepjT_full) WRITE(var_name,'(a,a,a)') TRIM(ADJUSTL(ikp_string)),'/Ciepj/CiepjF' CALL getarr(fid, var_name, CiepjF_full) ! Fill sub array with only usefull polynmials degree DO ip_i = 0,Pmaxi ! Loop over rows DO ij_i = 0,Jmaxi irow_sub = (Jmaxi +1)*ip_i + ij_i +1 irow_full = (jdimi +1)*ip_i + ij_i +1 DO il_i = 0,Pmaxi ! Loop over columns DO ik_i = 0,Jmaxi icol_sub = (Jmaxi +1)*il_i + ik_i +1 icol_full = (jdimi +1)*il_i + ik_i +1 CiepjT_kp(irow_sub,icol_sub,ikp) = CiepjT_full(irow_full,icol_full) ENDDO ENDDO DO il_e = 0,pmaxe ! Loop over columns DO ik_e = 0,jmaxe icol_sub = (jmaxe +1)*il_e + ik_e +1 icol_full = (jdime +1)*il_e + ik_e +1 CiepjF_kp(irow_sub,icol_sub,ikp) = CiepjF_full(irow_full,icol_full) ENDDO ENDDO ENDDO ENDDO DEALLOCATE(CiepjF_full) DEALLOCATE(CiepjT_full) ELSE CeipjT_kp = 0._dp; CeipjF_kp = 0._dp; CiepjT_kp = 0._dp; CiepjF_kp = 0._dp; ENDIF ENDDO CALL closef(fid) IF (gyrokin_CO) THEN ! Interpolation of the kperp matrix values on kx ky grid IF (my_id .EQ. 0 ) WRITE(*,*) '...Interpolation from matrices kperp to simulation kx,ky...' DO ikx = ikxs,ikxe DO iky = ikys,ikye DO iz = izs,ize ! Check for nonlinear case if we are in the anti aliased domain or the filtered one kperp_sim = MIN(kparray(iky,ikx,iz,0),collision_kcut) ! current simulation kperp ! Find the interval in kp grid mat where kperp_sim is contained ! Loop over the whole kp mat grid to find the smallest kperp that is ! larger than the current kperp_sim (brute force...) DO ikp=1,nkp_mat ikp_mat = ikp ! the first indice of the interval (k0) kperp_mat = kp_grid_mat(ikp) IF(kperp_mat .GT. kperp_sim) EXIT ! a matrix with kperp2 > current kx2 + ky2 has been found ENDDO ! Interpolation ! interval boundaries ikp_next = ikp_mat !index of k1 (larger than kperp_sim thanks to previous loop) ikp_prev = ikp_mat - 1 !index of k0 (smaller neighbour to interpolate inbetween) if ( (kp_grid_mat(ikp_prev) .GT. kperp_sim) .OR. (kp_grid_mat(ikp_next) .LT. kperp_sim) ) THEN ! write(*,*) 'Warning, linear interp of collision matrix failed!! ' ! write(*,*) kp_grid_mat(ikp_prev), '<', kperp_sim, '<', kp_grid_mat(ikp_next) ENDIF ! 0->1 variable for linear interp, i.e. zero2one = (k-k0)/(k1-k0) zerotoone = MIN(1._dp,(kperp_sim - kp_grid_mat(ikp_prev))/(kp_grid_mat(ikp_next) - kp_grid_mat(ikp_prev))) ! Linear interpolation between previous and next kperp matrix values Ceepj (:,:,iky,ikx,iz) = (Ceepj__kp(:,:,ikp_next) - Ceepj__kp(:,:,ikp_prev))*zerotoone + Ceepj__kp(:,:,ikp_prev) Ciipj (:,:,iky,ikx,iz) = (Ciipj__kp(:,:,ikp_next) - Ciipj__kp(:,:,ikp_prev))*zerotoone + Ciipj__kp(:,:,ikp_prev) IF(interspecies) THEN CeipjT(:,:,iky,ikx,iz) = (CeipjT_kp(:,:,ikp_next) - CeipjT_kp(:,:,ikp_prev))*zerotoone + CeipjT_kp(:,:,ikp_prev) CeipjF(:,:,iky,ikx,iz) = (CeipjF_kp(:,:,ikp_next) - CeipjF_kp(:,:,ikp_prev))*zerotoone + CeipjF_kp(:,:,ikp_prev) CiepjT(:,:,iky,ikx,iz) = (CiepjT_kp(:,:,ikp_next) - CiepjT_kp(:,:,ikp_prev))*zerotoone + CiepjT_kp(:,:,ikp_prev) CiepjF(:,:,iky,ikx,iz) = (CiepjF_kp(:,:,ikp_next) - CiepjF_kp(:,:,ikp_prev))*zerotoone + CiepjF_kp(:,:,ikp_prev) ELSE CeipjT(:,:,iky,ikx,iz) = 0._dp CeipjF(:,:,iky,ikx,iz) = 0._dp CiepjT(:,:,iky,ikx,iz) = 0._dp CiepjF(:,:,iky,ikx,iz) = 0._dp ENDIF ENDDO ENDDO ENDDO ELSE ! DK -> No kperp dep, copy simply to final collision matrices Ceepj (:,:,1,1,1) = Ceepj__kp(:,:,1) CeipjT(:,:,1,1,1) = CeipjT_kp(:,:,1) CeipjF(:,:,1,1,1) = CeipjF_kp(:,:,1) Ciipj (:,:,1,1,1) = Ciipj__kp(:,:,1) CiepjT(:,:,1,1,1) = CiepjT_kp(:,:,1) CiepjF(:,:,1,1,1) = CiepjF_kp(:,:,1) ENDIF ! Deallocate auxiliary variables DEALLOCATE (Ceepj__kp); DEALLOCATE (CeipjT_kp); DEALLOCATE (CeipjF_kp) DEALLOCATE (Ciipj__kp); DEALLOCATE (CiepjT_kp); DEALLOCATE (CiepjF_kp) IF( .NOT. interspecies ) THEN IF(my_id.EQ.0) write(*,*) "--Like Species operator--" CeipjF = 0._dp; CeipjT = 0._dp; CiepjF = 0._dp; CiepjT = 0._dp; ENDIF IF (my_id .EQ. 0) WRITE(*,*) '============DONE===========' END SUBROUTINE load_COSOlver_mat !******************************************************************************! end module collision