MODULE time_integration USE prec_const IMPLICIT NONE PRIVATE INTEGER, PUBLIC, PROTECTED :: ntimelevel=4 ! Total number of time levels required by the numerical scheme INTEGER, PUBLIC, PROTECTED :: updatetlevel ! Current time level to be updated real(dp),PUBLIC,PROTECTED,DIMENSION(:,:),ALLOCATABLE :: A_E,A_I real(dp),PUBLIC,PROTECTED,DIMENSION(:),ALLOCATABLE :: b_E,b_Es,b_I real(dp),PUBLIC,PROTECTED,DIMENSION(:),ALLOCATABLE :: c_E,c_I !Coeff for Expl/Implic time integration in case of time dependent RHS (i.e. dy/dt = f(y,t)) see Baptiste Frei CSE Rapport 06/17 character(len=10),PUBLIC,PROTECTED :: numerical_scheme='RK4' PUBLIC :: set_updatetlevel, time_integration_readinputs, time_integration_outputinputs CONTAINS SUBROUTINE set_updatetlevel(new_updatetlevel) INTEGER, INTENT(in) :: new_updatetlevel updatetlevel = new_updatetlevel END SUBROUTINE set_updatetlevel SUBROUTINE time_integration_readinputs ! Read the input parameters USE prec_const USE basic, ONLY : lu_in IMPLICIT NONE NAMELIST /TIME_INTEGRATION_PAR/ numerical_scheme READ(lu_in,time_integration_par) CALL set_numerical_scheme END SUBROUTINE time_integration_readinputs SUBROUTINE time_integration_outputinputs(fidres, str) ! Write the input parameters to the results_xx.h5 file USE prec_const USE futils, ONLY: attach IMPLICIT NONE INTEGER, INTENT(in) :: fidres CHARACTER(len=256), INTENT(in) :: str CALL attach(fidres, TRIM(str), "numerical_scheme", numerical_scheme) END SUBROUTINE time_integration_outputinputs SUBROUTINE set_numerical_scheme ! Initialize Butcher coefficient of numerical_scheme use basic IMPLICIT NONE SELECT CASE (numerical_scheme) ! Order 2 methods CASE ('RK2') CALL RK2 CASE ('SSPx_RK2') CALL SSPx_RK2 ! Order 3 methods CASE ('RK3') CALL RK3 CASE ('SSP_RK3') CALL SSP_RK3 CASE ('SSPx_RK3') CALL SSPx_RK3 CASE ('IMEX_SSP2') CALL IMEX_SSP2 CASE ('ARK2') CALL ARK2 ! Order 4 methods CASE ('RK4') CALL RK4 ! Order 5 methods CASE ('DOPRI5') CALL DOPRI5 CASE DEFAULT IF (my_id .EQ. 0) WRITE(*,*) 'Cannot initialize time integration scheme. Name invalid.' END SELECT IF (my_id .EQ. 0) WRITE(*,*) " Time integration with ", numerical_scheme END SUBROUTINE set_numerical_scheme !!! second order time schemes SUBROUTINE RK2 ! Butcher coeff for clasical RK2 (Heun's) USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 2 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 2 c_E(1) = 0.0_dp c_E(2) = 1.0_dp b_E(1) = 1._dp/2._dp b_E(2) = 1._dp/2._dp A_E(2,1) = 1._dp END SUBROUTINE RK2 SUBROUTINE SSPx_RK2 ! DOESNT WORK ! Butcher coeff for modified strong stability preserving RK2 ! used in GX (Hammett 2022, Mandell et al. 2022) USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 2 REAL(dp) :: alpha, beta alpha = 1._dp/SQRT(2._dp) beta = SQRT(2._dp) - 1._dp CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 2 c_E(1) = 0.0_dp c_E(2) = 1.0_dp/2.0_dp b_E(1) = alpha*beta/2._dp b_E(2) = alpha/2._dp A_E(2,1) = alpha ! b_E(1) = 1._dp ! b_E(2) = 1._dp/SQRT(2._dp) ! A_E(2,1) = 1._dp/SQRT(2._dp) END SUBROUTINE SSPx_RK2 !!! third order time schemes SUBROUTINE RK3 ! Butcher coeff for classical RK3 USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 3 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 3 c_E(1) = 0.0_dp c_E(2) = 1.0_dp/2.0_dp c_E(3) = 1.0_dp b_E(1) = 1._dp/6._dp b_E(2) = 2._dp/3._dp b_E(3) = 1._dp/6._dp A_E(2,1) = 1.0_dp/2.0_dp A_E(3,1) = -1._dp A_E(3,2) = 2._dp END SUBROUTINE RK3 SUBROUTINE SSPx_RK3 ! DOESNT WORK ! Butcher coeff for modified strong stability preserving RK3 ! used in GX (Hammett 2022, Mandell et al. 2022) USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 3 REAL(dp) :: a1, a2, a3, w1, w2, w3 a1 = (1._dp/6._dp)**(1._dp/3._dp)! (1/6)^(1/3) ! a1 = 0.5503212081491044571635029569733887910843_dp ! (1/6)^(1/3) a2 = a1 a3 = a1 w1 = 0.5_dp*(-1._dp + SQRT( 9._dp - 2._dp * 6._dp**(2._dp/3._dp))) ! (-1 + sqrt(9-2*6^(2/3)))/2 ! w1 = 0.2739744023885328783052273138309828937054_dp ! (sqrt(9-2*6^(2/3))-1)/2 w2 = 0.5_dp*(-1._dp + 6._dp**(2._dp/3._dp) - SQRT(9._dp - 2._dp * 6._dp**(2._dp/3._dp))) ! (6^(2/3)-1-sqrt(9-2*6^(2/3)))/2 ! w2 = 0.3769892220587804931852815570891834795475_dp ! (6^(2/3)-1-sqrt(9-2*6^(2/3)))/2 w3 = 1._dp/a1 - w2 * (1._dp + w1) ! w3 = 1.3368459739528868457369981115334667265415_dp CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 3 c_E(1) = 0.0_dp c_E(2) = 1.0_dp/2.0_dp c_E(3) = 1.0_dp/2.0_dp b_E(1) = a1 * (w1*w2 + w3) b_E(2) = a2 * w2 b_E(3) = a3 A_E(2,1) = a1 A_E(3,1) = a1 * w1 A_E(3,2) = a2 END SUBROUTINE SSPx_RK3 SUBROUTINE IMEX_SSP2 !! Version of Rokhzadi 2017 (An Optimally Stable and Accurate Second-Order ! SSP Runge-Kutta IMEX Scheme for Atmospheric Applications) USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 3 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 3 c_E(1) = 0._dp c_E(2) = 0.711664700366941_dp c_E(3) = 0.994611536833690_dp b_E(1) = 0.398930808264688_dp b_E(2) = 0.345755244189623_dp b_E(3) = 0.255313947545689_dp A_E(2,1) = 0.711664700366941_dp A_E(3,1) = 0.077338168947683_dp A_E(3,2) = 0.917273367886007_dp END SUBROUTINE IMEX_SSP2 SUBROUTINE ARK2 !! Version of Rokhzadi 2017 (An Optimally Stable and Accurate Second-Order ! SSP Runge-Kutta IMEX Scheme for Atmospheric Applications) USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 3 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 3 c_E(1) = 0._dp c_E(2) = 2._dp*(1._dp - 1._dp/SQRT2) c_E(3) = 1._dp b_E(1) = 1._dp/(2._dp*SQRT2) b_E(2) = 1._dp/(2._dp*SQRT2) b_E(3) = 1._dp - 1._dp/SQRT2 A_E(2,1) = 2._dp*(1._dp - 1._dp/SQRT2) A_E(3,1) = 1._dp - (3._dp + 2._dp*SQRT2)/6._dp A_E(3,2) = (3._dp + 2._dp*SQRT2)/6._dp END SUBROUTINE ARK2 SUBROUTINE SSP_RK3 ! Butcher coeff for strong stability preserving RK3 USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 3 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 3 c_E(1) = 0.0_dp c_E(2) = 1.0_dp c_E(3) = 1.0_dp/2.0_dp b_E(1) = 1._dp/6._dp b_E(2) = 1._dp/6._dp b_E(3) = 2._dp/3._dp A_E(2,1) = 1._dp A_E(3,1) = 1._dp/4._dp A_E(3,2) = 1._dp/4._dp END SUBROUTINE SSP_RK3 !!! fourth order time schemes SUBROUTINE RK4 ! Butcher coeff for RK4 (default) USE basic USE prec_const IMPLICIT NONE INTEGER,PARAMETER :: nbstep = 4 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 4 c_E(1) = 0.0_dp c_E(2) = 1.0_dp/2.0_dp c_E(3) = 1.0_dp/2.0_dp c_E(4) = 1.0_dp b_E(1) = 1.0_dp/6.0_dp b_E(2) = 1.0_dp/3.0_dp b_E(3) = 1.0_dp/3.0_dp b_E(4) = 1.0_dp/6.0_dp A_E(2,1) = 1.0_dp/2.0_dp A_E(3,2) = 1.0_dp/2.0_dp A_E(4,3) = 1.0_dp END SUBROUTINE RK4 !!! fifth order time schemes SUBROUTINE DOPRI5 ! Butcher coeff for DOPRI5 --> Stiffness detection ! DOPRI5 used for stiffness detection. ! 5 order method/7 stages USE basic IMPLICIT NONE INTEGER,PARAMETER :: nbstep =7 CALL allocate_array_dp1(c_E,1,nbstep) CALL allocate_array_dp1(b_E,1,nbstep) CALL allocate_array_dp2(A_E,1,nbstep,1,nbstep) ntimelevel = 7 c_E(1) = 0._dp c_E(2) = 1.0_dp/5.0_dp c_E(3) = 3.0_dp /10.0_dp c_E(4) = 4.0_dp/5.0_dp c_E(5) = 8.0_dp/9.0_dp c_E(6) = 1.0_dp c_E(7) = 1.0_dp A_E(2,1) = 1.0_dp/5.0_dp A_E(3,1) = 3.0_dp/40.0_dp A_E(3,2) = 9.0_dp/40.0_dp A_E(4,1) = 44.0_dp/45.0_dp A_E(4,2) = -56.0_dp/15.0_dp A_E(4,3) = 32.0_dp/9.0_dp A_E(5,1 ) = 19372.0_dp/6561.0_dp A_E(5,2) = -25360.0_dp/2187.0_dp A_E(5,3) = 64448.0_dp/6561.0_dp A_E(5,4) = -212.0_dp/729.0_dp A_E(6,1) = 9017.0_dp/3168.0_dp A_E(6,2)= -355.0_dp/33.0_dp A_E(6,3) = 46732.0_dp/5247.0_dp A_E(6,4) = 49.0_dp/176.0_dp A_E(6,5) = -5103.0_dp/18656.0_dp A_E(7,1) = 35.0_dp/384.0_dp A_E(7,3) = 500.0_dp/1113.0_dp A_E(7,4) = 125.0_dp/192.0_dp A_E(7,5) = -2187.0_dp/6784.0_dp A_E(7,6) = 11.0_dp/84.0_dp b_E(1) = 35.0_dp/384.0_dp b_E(2) = 0._dp b_E(3) = 500.0_dp/1113.0_dp b_E(4) = 125.0_dp/192.0_dp b_E(5) = -2187.0_dp/6784.0_dp b_E(6) = 11.0_dp/84.0_dp b_E(7) = 0._dp END SUBROUTINE DOPRI5 END MODULE time_integration